feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,13 @@
A demo of the Java wrapper for OpenCV with two examples:
1) feature detection and matching and
2) face detection.
The examples are coded in Scala and Java.
Anyone familiar with Java should be able to read the Scala examples.
Please feel free to contribute code examples in Scala or Java, or any JVM language.
To run the examples:
1) Install OpenCV and copy the OpenCV jar to lib/.
This jar must match the native libraries installed in your system.
If this isn't the case, you may get a java.lang.UnsatisfiedLinkError at runtime.
2) Go to the root directory and type "sbt/sbt run".
This should generate images in your current directory.

View File

@ -0,0 +1,22 @@
import sbt._
import Keys._
object OpenCVJavaDemoBuild extends Build {
def scalaSettings = Seq(
scalaVersion := "2.10.0",
scalacOptions ++= Seq(
"-optimize",
"-unchecked",
"-deprecation"
)
)
def buildSettings =
Project.defaultSettings ++
scalaSettings
lazy val root = {
val settings = buildSettings ++ Seq(name := "OpenCVJavaDemo")
Project(id = "OpenCVJavaDemo", base = file("."), settings = settings)
}
}

View File

@ -0,0 +1 @@
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0")

View File

@ -0,0 +1 @@
java -Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=384M -jar `dirname $0`/sbt-launch.jar "$@"

Binary file not shown.

View File

@ -0,0 +1,45 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
/*
* Detects faces in an image, draws boxes around them, and writes the results
* to "faceDetection.png".
*/
public class DetectFaceDemo {
public void run() {
System.out.println("\nRunning DetectFaceDemo");
// Create a face detector from the cascade file in the resources
// directory.
CascadeClassifier faceDetector = new CascadeClassifier(getClass()
.getResource("/lbpcascade_frontalface.xml").getPath());
Mat image = Imgcodecs.imread(getClass().getResource(
"/AverageMaleFace.jpg").getPath());
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces",
faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Imgproc.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x
+ rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
}
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Imgcodecs.imwrite(filename, image);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 272 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 278 KiB

View File

@ -0,0 +1,23 @@
/*
* The main runner for the Java demos.
* Demos whose name begins with "Scala" are written in the Scala language,
* demonstrating the generic nature of the interface.
* The other demos are in Java.
* Currently, all demos are run, sequentially.
*
* You're invited to submit your own examples, in any JVM language of
* your choosing so long as you can get them to build.
*/
import org.opencv.core.Core
object Main extends App {
// We must load the native library before using any OpenCV functions.
// You must load this library _exactly once_ per Java invocation.
// If you load it more than once, you will get a java.lang.UnsatisfiedLinkError.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME)
ScalaCorrespondenceMatchingDemo.run()
ScalaDetectFaceDemo.run()
new DetectFaceDemo().run()
}

View File

@ -0,0 +1,69 @@
import org.opencv.imgcodecs.Imgcodecs
import org.opencv.features2d.DescriptorExtractor
import org.opencv.features2d.Features2d
import org.opencv.core.MatOfKeyPoint
import org.opencv.core.Mat
import org.opencv.features2d.FeatureDetector
import org.opencv.features2d.DescriptorMatcher
import org.opencv.core.MatOfDMatch
import reflect._
/*
* Finds corresponding points between a pair of images using local descriptors.
* The correspondences are visualized in the image "scalaCorrespondences.png",
* which is written to disk.
*/
object ScalaCorrespondenceMatchingDemo {
def run() {
println(s"\nRunning ${classTag[this.type].toString.replace("$", "")}")
// Detects keypoints and extracts descriptors in a given image of type Mat.
def detectAndExtract(mat: Mat) = {
// A special container class for KeyPoint.
val keyPoints = new MatOfKeyPoint
// We're using the ORB detector.
val detector = FeatureDetector.create(FeatureDetector.ORB)
detector.detect(mat, keyPoints)
println(s"There were ${keyPoints.toArray.size} KeyPoints detected")
// Let's just use the best KeyPoints.
val sorted = keyPoints.toArray.sortBy(_.response).reverse.take(50)
// There isn't a constructor that takes Array[KeyPoint], so we unpack
// the array and use the constructor that can take any number of
// arguments.
val bestKeyPoints: MatOfKeyPoint = new MatOfKeyPoint(sorted: _*)
// We're using the ORB descriptor.
val extractor = DescriptorExtractor.create(DescriptorExtractor.ORB)
val descriptors = new Mat
extractor.compute(mat, bestKeyPoints, descriptors)
println(s"${descriptors.rows} descriptors were extracted, each with dimension ${descriptors.cols}")
(bestKeyPoints, descriptors)
}
// Load the images from the |resources| directory.
val leftImage = Imgcodecs.imread(getClass.getResource("/img1.png").getPath)
val rightImage = Imgcodecs.imread(getClass.getResource("/img2.png").getPath)
// Detect KeyPoints and extract descriptors.
val (leftKeyPoints, leftDescriptors) = detectAndExtract(leftImage)
val (rightKeyPoints, rightDescriptors) = detectAndExtract(rightImage)
// Match the descriptors.
val matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE)
// A special container class for DMatch.
val dmatches = new MatOfDMatch
// The backticks are because "match" is a keyword in Scala.
matcher.`match`(leftDescriptors, rightDescriptors, dmatches)
// Visualize the matches and save the visualization.
val correspondenceImage = new Mat
Features2d.drawMatches(leftImage, leftKeyPoints, rightImage, rightKeyPoints, dmatches, correspondenceImage)
val filename = "scalaCorrespondences.png"
println(s"Writing ${filename}")
assert(Imgcodecs.imwrite(filename, correspondenceImage))
}
}

View File

@ -0,0 +1,44 @@
import org.opencv.core.Core
import org.opencv.core.MatOfRect
import org.opencv.core.Point
import org.opencv.core.Scalar
import org.opencv.imgcodecs.Imgcodecs
import org.opencv.imgproc.Imgproc
import org.opencv.objdetect.CascadeClassifier
import reflect._
/*
* Detects faces in an image, draws boxes around them, and writes the results
* to "scalaFaceDetection.png".
*/
object ScalaDetectFaceDemo {
def run() {
println(s"\nRunning ${classTag[this.type].toString.replace("$", "")}")
// Create a face detector from the cascade file in the resources directory.
val faceDetector = new CascadeClassifier(getClass.getResource("/lbpcascade_frontalface.xml").getPath)
val image = Imgcodecs.imread(getClass.getResource("/AverageMaleFace.jpg").getPath)
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
val faceDetections = new MatOfRect
faceDetector.detectMultiScale(image, faceDetections)
println(s"Detected ${faceDetections.toArray.size} faces")
// Draw a bounding box around each face.
for (rect <- faceDetections.toArray) {
Imgproc.rectangle(
image,
new Point(rect.x, rect.y),
new Point(rect.x + rect.width,
rect.y + rect.height),
new Scalar(0, 255, 0))
}
// Save the visualized detection.
val filename = "scalaFaceDetection.png"
println(s"Writing ${filename}")
assert(Imgcodecs.imwrite(filename, image))
}
}