feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
85
3rdparty/opencv-4.5.4/samples/python/stereo_match.py
vendored
Executable file
85
3rdparty/opencv-4.5.4/samples/python/stereo_match.py
vendored
Executable file
@ -0,0 +1,85 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Simple example of stereo image matching and point cloud generation.
|
||||
|
||||
Resulting .ply file cam be easily viewed using MeshLab ( http://meshlab.sourceforge.net/ )
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
ply_header = '''ply
|
||||
format ascii 1.0
|
||||
element vertex %(vert_num)d
|
||||
property float x
|
||||
property float y
|
||||
property float z
|
||||
property uchar red
|
||||
property uchar green
|
||||
property uchar blue
|
||||
end_header
|
||||
'''
|
||||
|
||||
def write_ply(fn, verts, colors):
|
||||
verts = verts.reshape(-1, 3)
|
||||
colors = colors.reshape(-1, 3)
|
||||
verts = np.hstack([verts, colors])
|
||||
with open(fn, 'wb') as f:
|
||||
f.write((ply_header % dict(vert_num=len(verts))).encode('utf-8'))
|
||||
np.savetxt(f, verts, fmt='%f %f %f %d %d %d ')
|
||||
|
||||
|
||||
def main():
|
||||
print('loading images...')
|
||||
imgL = cv.pyrDown(cv.imread(cv.samples.findFile('aloeL.jpg'))) # downscale images for faster processing
|
||||
imgR = cv.pyrDown(cv.imread(cv.samples.findFile('aloeR.jpg')))
|
||||
|
||||
# disparity range is tuned for 'aloe' image pair
|
||||
window_size = 3
|
||||
min_disp = 16
|
||||
num_disp = 112-min_disp
|
||||
stereo = cv.StereoSGBM_create(minDisparity = min_disp,
|
||||
numDisparities = num_disp,
|
||||
blockSize = 16,
|
||||
P1 = 8*3*window_size**2,
|
||||
P2 = 32*3*window_size**2,
|
||||
disp12MaxDiff = 1,
|
||||
uniquenessRatio = 10,
|
||||
speckleWindowSize = 100,
|
||||
speckleRange = 32
|
||||
)
|
||||
|
||||
print('computing disparity...')
|
||||
disp = stereo.compute(imgL, imgR).astype(np.float32) / 16.0
|
||||
|
||||
print('generating 3d point cloud...',)
|
||||
h, w = imgL.shape[:2]
|
||||
f = 0.8*w # guess for focal length
|
||||
Q = np.float32([[1, 0, 0, -0.5*w],
|
||||
[0,-1, 0, 0.5*h], # turn points 180 deg around x-axis,
|
||||
[0, 0, 0, -f], # so that y-axis looks up
|
||||
[0, 0, 1, 0]])
|
||||
points = cv.reprojectImageTo3D(disp, Q)
|
||||
colors = cv.cvtColor(imgL, cv.COLOR_BGR2RGB)
|
||||
mask = disp > disp.min()
|
||||
out_points = points[mask]
|
||||
out_colors = colors[mask]
|
||||
out_fn = 'out.ply'
|
||||
write_ply(out_fn, out_points, out_colors)
|
||||
print('%s saved' % out_fn)
|
||||
|
||||
cv.imshow('left', imgL)
|
||||
cv.imshow('disparity', (disp-min_disp)/num_disp)
|
||||
cv.waitKey()
|
||||
|
||||
print('Done')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
print(__doc__)
|
||||
main()
|
||||
cv.destroyAllWindows()
|
Reference in New Issue
Block a user