feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,54 @@
"""
@file filter2D.py
@brief Sample code that shows how to implement your own linear filters by using filter2D function
"""
import sys
import cv2 as cv
import numpy as np
def main(argv):
window_name = 'filter2D Demo'
## [load]
imageName = argv[0] if len(argv) > 0 else 'lena.jpg'
# Loads an image
src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: filter2D.py [image_name -- default lena.jpg] \n')
return -1
## [load]
## [init_arguments]
# Initialize ddepth argument for the filter
ddepth = -1
## [init_arguments]
# Loop - Will filter the image with different kernel sizes each 0.5 seconds
ind = 0
while True:
## [update_kernel]
# Update kernel size for a normalized box filter
kernel_size = 3 + 2 * (ind % 5)
kernel = np.ones((kernel_size, kernel_size), dtype=np.float32)
kernel /= (kernel_size * kernel_size)
## [update_kernel]
## [apply_filter]
# Apply filter
dst = cv.filter2D(src, ddepth, kernel)
## [apply_filter]
cv.imshow(window_name, dst)
c = cv.waitKey(500)
if c == 27:
break
ind += 1
return 0
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,59 @@
import sys
import cv2 as cv
import numpy as np
def main(argv):
## [load]
default_file = 'smarties.png'
filename = argv[0] if len(argv) > 0 else default_file
# Loads an image
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: hough_circle.py [image_name -- default ' + default_file + '] \n')
return -1
## [load]
## [convert_to_gray]
# Convert it to gray
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
## [convert_to_gray]
## [reduce_noise]
# Reduce the noise to avoid false circle detection
gray = cv.medianBlur(gray, 5)
## [reduce_noise]
## [houghcircles]
rows = gray.shape[0]
circles = cv.HoughCircles(gray, cv.HOUGH_GRADIENT, 1, rows / 8,
param1=100, param2=30,
minRadius=1, maxRadius=30)
## [houghcircles]
## [draw]
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
center = (i[0], i[1])
# circle center
cv.circle(src, center, 1, (0, 100, 100), 3)
# circle outline
radius = i[2]
cv.circle(src, center, radius, (255, 0, 255), 3)
## [draw]
## [display]
cv.imshow("detected circles", src)
cv.waitKey(0)
## [display]
return 0
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,79 @@
"""
@file hough_lines.py
@brief This program demonstrates line finding with the Hough transform
"""
import sys
import math
import cv2 as cv
import numpy as np
def main(argv):
## [load]
default_file = 'sudoku.png'
filename = argv[0] if len(argv) > 0 else default_file
# Loads an image
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_GRAYSCALE)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: hough_lines.py [image_name -- default ' + default_file + '] \n')
return -1
## [load]
## [edge_detection]
# Edge detection
dst = cv.Canny(src, 50, 200, None, 3)
## [edge_detection]
# Copy edges to the images that will display the results in BGR
cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR)
cdstP = np.copy(cdst)
## [hough_lines]
# Standard Hough Line Transform
lines = cv.HoughLines(dst, 1, np.pi / 180, 150, None, 0, 0)
## [hough_lines]
## [draw_lines]
# Draw the lines
if lines is not None:
for i in range(0, len(lines)):
rho = lines[i][0][0]
theta = lines[i][0][1]
a = math.cos(theta)
b = math.sin(theta)
x0 = a * rho
y0 = b * rho
pt1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a)))
pt2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a)))
cv.line(cdst, pt1, pt2, (0,0,255), 3, cv.LINE_AA)
## [draw_lines]
## [hough_lines_p]
# Probabilistic Line Transform
linesP = cv.HoughLinesP(dst, 1, np.pi / 180, 50, None, 50, 10)
## [hough_lines_p]
## [draw_lines_p]
# Draw the lines
if linesP is not None:
for i in range(0, len(linesP)):
l = linesP[i][0]
cv.line(cdstP, (l[0], l[1]), (l[2], l[3]), (0,0,255), 3, cv.LINE_AA)
## [draw_lines_p]
## [imshow]
# Show results
cv.imshow("Source", src)
cv.imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst)
cv.imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP)
## [imshow]
## [exit]
# Wait and Exit
cv.waitKey()
return 0
## [exit]
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,59 @@
"""
@file laplace_demo.py
@brief Sample code showing how to detect edges using the Laplace operator
"""
import sys
import cv2 as cv
def main(argv):
# [variables]
# Declare the variables we are going to use
ddepth = cv.CV_16S
kernel_size = 3
window_name = "Laplace Demo"
# [variables]
# [load]
imageName = argv[0] if len(argv) > 0 else 'lena.jpg'
src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR) # Load an image
# Check if image is loaded fine
if src is None:
print ('Error opening image')
print ('Program Arguments: [image_name -- default lena.jpg]')
return -1
# [load]
# [reduce_noise]
# Remove noise by blurring with a Gaussian filter
src = cv.GaussianBlur(src, (3, 3), 0)
# [reduce_noise]
# [convert_to_gray]
# Convert the image to grayscale
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# [convert_to_gray]
# Create Window
cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)
# [laplacian]
# Apply Laplace function
dst = cv.Laplacian(src_gray, ddepth, ksize=kernel_size)
# [laplacian]
# [convert]
# converting back to uint8
abs_dst = cv.convertScaleAbs(dst)
# [convert]
# [display]
cv.imshow(window_name, abs_dst)
cv.waitKey(0)
# [display]
return 0
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,69 @@
"""
@file copy_make_border.py
@brief Sample code that shows the functionality of copyMakeBorder
"""
import sys
from random import randint
import cv2 as cv
def main(argv):
## [variables]
# First we declare the variables we are going to use
borderType = cv.BORDER_CONSTANT
window_name = "copyMakeBorder Demo"
## [variables]
## [load]
imageName = argv[0] if len(argv) > 0 else 'lena.jpg'
# Loads an image
src = cv.imread(cv.samples.findFile(imageName), cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image!')
print ('Usage: copy_make_border.py [image_name -- default lena.jpg] \n')
return -1
## [load]
# Brief how-to for this program
print ('\n'
'\t copyMakeBorder Demo: \n'
' -------------------- \n'
' ** Press \'c\' to set the border to a random constant value \n'
' ** Press \'r\' to set the border to be replicated \n'
' ** Press \'ESC\' to exit the program ')
## [create_window]
cv.namedWindow(window_name, cv.WINDOW_AUTOSIZE)
## [create_window]
## [init_arguments]
# Initialize arguments for the filter
top = int(0.05 * src.shape[0]) # shape[0] = rows
bottom = top
left = int(0.05 * src.shape[1]) # shape[1] = cols
right = left
## [init_arguments]
while 1:
## [update_value]
value = [randint(0, 255), randint(0, 255), randint(0, 255)]
## [update_value]
## [copymakeborder]
dst = cv.copyMakeBorder(src, top, bottom, left, right, borderType, None, value)
## [copymakeborder]
## [display]
cv.imshow(window_name, dst)
## [display]
## [check_keypress]
c = cv.waitKey(500)
if c == 27:
break
elif c == 99: # 99 = ord('c')
borderType = cv.BORDER_CONSTANT
elif c == 114: # 114 = ord('r')
borderType = cv.BORDER_REPLICATE
## [check_keypress]
return 0
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,74 @@
"""
@file sobel_demo.py
@brief Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
"""
import sys
import cv2 as cv
def main(argv):
## [variables]
# First we declare the variables we are going to use
window_name = ('Sobel Demo - Simple Edge Detector')
scale = 1
delta = 0
ddepth = cv.CV_16S
## [variables]
## [load]
# As usual we load our source image (src)
# Check number of arguments
if len(argv) < 1:
print ('Not enough parameters')
print ('Usage:\nmorph_lines_detection.py < path_to_image >')
return -1
# Load the image
src = cv.imread(argv[0], cv.IMREAD_COLOR)
# Check if image is loaded fine
if src is None:
print ('Error opening image: ' + argv[0])
return -1
## [load]
## [reduce_noise]
# Remove noise by blurring with a Gaussian filter ( kernel size = 3 )
src = cv.GaussianBlur(src, (3, 3), 0)
## [reduce_noise]
## [convert_to_gray]
# Convert the image to grayscale
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
## [convert_to_gray]
## [sobel]
# Gradient-X
# grad_x = cv.Scharr(gray,ddepth,1,0)
grad_x = cv.Sobel(gray, ddepth, 1, 0, ksize=3, scale=scale, delta=delta, borderType=cv.BORDER_DEFAULT)
# Gradient-Y
# grad_y = cv.Scharr(gray,ddepth,0,1)
grad_y = cv.Sobel(gray, ddepth, 0, 1, ksize=3, scale=scale, delta=delta, borderType=cv.BORDER_DEFAULT)
## [sobel]
## [convert]
# converting back to uint8
abs_grad_x = cv.convertScaleAbs(grad_x)
abs_grad_y = cv.convertScaleAbs(grad_y)
## [convert]
## [blend]
## Total Gradient (approximate)
grad = cv.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0)
## [blend]
## [display]
cv.imshow(window_name, grad)
cv.waitKey(0)
## [display]
return 0
if __name__ == "__main__":
main(sys.argv[1:])

View File

@ -0,0 +1,34 @@
from __future__ import print_function
import cv2 as cv
import argparse
max_lowThreshold = 100
window_name = 'Edge Map'
title_trackbar = 'Min Threshold:'
ratio = 3
kernel_size = 3
def CannyThreshold(val):
low_threshold = val
img_blur = cv.blur(src_gray, (3,3))
detected_edges = cv.Canny(img_blur, low_threshold, low_threshold*ratio, kernel_size)
mask = detected_edges != 0
dst = src * (mask[:,:,None].astype(src.dtype))
cv.imshow(window_name, dst)
parser = argparse.ArgumentParser(description='Code for Canny Edge Detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='fruits.jpg')
args = parser.parse_args()
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv.namedWindow(window_name)
cv.createTrackbar(title_trackbar, window_name , 0, max_lowThreshold, CannyThreshold)
CannyThreshold(0)
cv.waitKey()

View File

@ -0,0 +1,139 @@
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
import random as rng
rng.seed(12345)
## [load_image]
# Load the image
parser = argparse.ArgumentParser(description='Code for Image Segmentation with Distance Transform and Watershed Algorithm.\
Sample code showing how to segment overlapping objects using Laplacian filtering, \
in addition to Watershed and Distance Transformation')
parser.add_argument('--input', help='Path to input image.', default='cards.png')
args = parser.parse_args()
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
# Show source image
cv.imshow('Source Image', src)
## [load_image]
## [black_bg]
# Change the background from white to black, since that will help later to extract
# better results during the use of Distance Transform
src[np.all(src == 255, axis=2)] = 0
# Show output image
cv.imshow('Black Background Image', src)
## [black_bg]
## [sharp]
# Create a kernel that we will use to sharpen our image
# an approximation of second derivative, a quite strong kernel
kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]], dtype=np.float32)
# do the laplacian filtering as it is
# well, we need to convert everything in something more deeper then CV_8U
# because the kernel has some negative values,
# and we can expect in general to have a Laplacian image with negative values
# BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
# so the possible negative number will be truncated
imgLaplacian = cv.filter2D(src, cv.CV_32F, kernel)
sharp = np.float32(src)
imgResult = sharp - imgLaplacian
# convert back to 8bits gray scale
imgResult = np.clip(imgResult, 0, 255)
imgResult = imgResult.astype('uint8')
imgLaplacian = np.clip(imgLaplacian, 0, 255)
imgLaplacian = np.uint8(imgLaplacian)
#cv.imshow('Laplace Filtered Image', imgLaplacian)
cv.imshow('New Sharped Image', imgResult)
## [sharp]
## [bin]
# Create binary image from source image
bw = cv.cvtColor(imgResult, cv.COLOR_BGR2GRAY)
_, bw = cv.threshold(bw, 40, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
cv.imshow('Binary Image', bw)
## [bin]
## [dist]
# Perform the distance transform algorithm
dist = cv.distanceTransform(bw, cv.DIST_L2, 3)
# Normalize the distance image for range = {0.0, 1.0}
# so we can visualize and threshold it
cv.normalize(dist, dist, 0, 1.0, cv.NORM_MINMAX)
cv.imshow('Distance Transform Image', dist)
## [dist]
## [peaks]
# Threshold to obtain the peaks
# This will be the markers for the foreground objects
_, dist = cv.threshold(dist, 0.4, 1.0, cv.THRESH_BINARY)
# Dilate a bit the dist image
kernel1 = np.ones((3,3), dtype=np.uint8)
dist = cv.dilate(dist, kernel1)
cv.imshow('Peaks', dist)
## [peaks]
## [seeds]
# Create the CV_8U version of the distance image
# It is needed for findContours()
dist_8u = dist.astype('uint8')
# Find total markers
contours, _ = cv.findContours(dist_8u, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
# Create the marker image for the watershed algorithm
markers = np.zeros(dist.shape, dtype=np.int32)
# Draw the foreground markers
for i in range(len(contours)):
cv.drawContours(markers, contours, i, (i+1), -1)
# Draw the background marker
cv.circle(markers, (5,5), 3, (255,255,255), -1)
markers_8u = (markers * 10).astype('uint8')
cv.imshow('Markers', markers_8u)
## [seeds]
## [watershed]
# Perform the watershed algorithm
cv.watershed(imgResult, markers)
#mark = np.zeros(markers.shape, dtype=np.uint8)
mark = markers.astype('uint8')
mark = cv.bitwise_not(mark)
# uncomment this if you want to see how the mark
# image looks like at that point
#cv.imshow('Markers_v2', mark)
# Generate random colors
colors = []
for contour in contours:
colors.append((rng.randint(0,256), rng.randint(0,256), rng.randint(0,256)))
# Create the result image
dst = np.zeros((markers.shape[0], markers.shape[1], 3), dtype=np.uint8)
# Fill labeled objects with random colors
for i in range(markers.shape[0]):
for j in range(markers.shape[1]):
index = markers[i,j]
if index > 0 and index <= len(contours):
dst[i,j,:] = colors[index-1]
# Visualize the final image
cv.imshow('Final Result', dst)
## [watershed]
cv.waitKey()

View File

@ -0,0 +1,65 @@
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
## [Update]
def update_map(ind, map_x, map_y):
if ind == 0:
for i in range(map_x.shape[0]):
for j in range(map_x.shape[1]):
if j > map_x.shape[1]*0.25 and j < map_x.shape[1]*0.75 and i > map_x.shape[0]*0.25 and i < map_x.shape[0]*0.75:
map_x[i,j] = 2 * (j-map_x.shape[1]*0.25) + 0.5
map_y[i,j] = 2 * (i-map_y.shape[0]*0.25) + 0.5
else:
map_x[i,j] = 0
map_y[i,j] = 0
elif ind == 1:
for i in range(map_x.shape[0]):
map_x[i,:] = [x for x in range(map_x.shape[1])]
for j in range(map_y.shape[1]):
map_y[:,j] = [map_y.shape[0]-y for y in range(map_y.shape[0])]
elif ind == 2:
for i in range(map_x.shape[0]):
map_x[i,:] = [map_x.shape[1]-x for x in range(map_x.shape[1])]
for j in range(map_y.shape[1]):
map_y[:,j] = [y for y in range(map_y.shape[0])]
elif ind == 3:
for i in range(map_x.shape[0]):
map_x[i,:] = [map_x.shape[1]-x for x in range(map_x.shape[1])]
for j in range(map_y.shape[1]):
map_y[:,j] = [map_y.shape[0]-y for y in range(map_y.shape[0])]
## [Update]
parser = argparse.ArgumentParser(description='Code for Remapping tutorial.')
parser.add_argument('--input', help='Path to input image.', default='chicky_512.png')
args = parser.parse_args()
## [Load]
src = cv.imread(cv.samples.findFile(args.input), cv.IMREAD_COLOR)
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)
## [Load]
## [Create]
map_x = np.zeros((src.shape[0], src.shape[1]), dtype=np.float32)
map_y = np.zeros((src.shape[0], src.shape[1]), dtype=np.float32)
## [Create]
## [Window]
window_name = 'Remap demo'
cv.namedWindow(window_name)
## [Window]
## [Loop]
ind = 0
while True:
update_map(ind, map_x, map_y)
ind = (ind + 1) % 4
dst = cv.remap(src, map_x, map_y, cv.INTER_LINEAR)
cv.imshow(window_name, dst)
c = cv.waitKey(1000)
if c == 27:
break
## [Loop]

View File

@ -0,0 +1,54 @@
from __future__ import print_function
import cv2 as cv
import numpy as np
import argparse
## [Load the image]
parser = argparse.ArgumentParser(description='Code for Affine Transformations tutorial.')
parser.add_argument('--input', help='Path to input image.', default='lena.jpg')
args = parser.parse_args()
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image:', args.input)
exit(0)
## [Load the image]
## [Set your 3 points to calculate the Affine Transform]
srcTri = np.array( [[0, 0], [src.shape[1] - 1, 0], [0, src.shape[0] - 1]] ).astype(np.float32)
dstTri = np.array( [[0, src.shape[1]*0.33], [src.shape[1]*0.85, src.shape[0]*0.25], [src.shape[1]*0.15, src.shape[0]*0.7]] ).astype(np.float32)
## [Set your 3 points to calculate the Affine Transform]
## [Get the Affine Transform]
warp_mat = cv.getAffineTransform(srcTri, dstTri)
## [Get the Affine Transform]
## [Apply the Affine Transform just found to the src image]
warp_dst = cv.warpAffine(src, warp_mat, (src.shape[1], src.shape[0]))
## [Apply the Affine Transform just found to the src image]
# Rotating the image after Warp
## [Compute a rotation matrix with respect to the center of the image]
center = (warp_dst.shape[1]//2, warp_dst.shape[0]//2)
angle = -50
scale = 0.6
## [Compute a rotation matrix with respect to the center of the image]
## [Get the rotation matrix with the specifications above]
rot_mat = cv.getRotationMatrix2D( center, angle, scale )
## [Get the rotation matrix with the specifications above]
## [Rotate the warped image]
warp_rotate_dst = cv.warpAffine(warp_dst, rot_mat, (warp_dst.shape[1], warp_dst.shape[0]))
## [Rotate the warped image]
## [Show what you got]
cv.imshow('Source image', src)
cv.imshow('Warp', warp_dst)
cv.imshow('Warp + Rotate', warp_rotate_dst)
## [Show what you got]
## [Wait until user exits the program]
cv.waitKey()
## [Wait until user exits the program]