feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
79
3rdparty/opencv-4.5.4/samples/python/tutorial_code/ImgTrans/HoughLine/hough_lines.py
vendored
Normal file
79
3rdparty/opencv-4.5.4/samples/python/tutorial_code/ImgTrans/HoughLine/hough_lines.py
vendored
Normal file
@ -0,0 +1,79 @@
|
||||
"""
|
||||
@file hough_lines.py
|
||||
@brief This program demonstrates line finding with the Hough transform
|
||||
"""
|
||||
import sys
|
||||
import math
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
|
||||
def main(argv):
|
||||
## [load]
|
||||
default_file = 'sudoku.png'
|
||||
filename = argv[0] if len(argv) > 0 else default_file
|
||||
|
||||
# Loads an image
|
||||
src = cv.imread(cv.samples.findFile(filename), cv.IMREAD_GRAYSCALE)
|
||||
|
||||
# Check if image is loaded fine
|
||||
if src is None:
|
||||
print ('Error opening image!')
|
||||
print ('Usage: hough_lines.py [image_name -- default ' + default_file + '] \n')
|
||||
return -1
|
||||
## [load]
|
||||
|
||||
## [edge_detection]
|
||||
# Edge detection
|
||||
dst = cv.Canny(src, 50, 200, None, 3)
|
||||
## [edge_detection]
|
||||
|
||||
# Copy edges to the images that will display the results in BGR
|
||||
cdst = cv.cvtColor(dst, cv.COLOR_GRAY2BGR)
|
||||
cdstP = np.copy(cdst)
|
||||
|
||||
## [hough_lines]
|
||||
# Standard Hough Line Transform
|
||||
lines = cv.HoughLines(dst, 1, np.pi / 180, 150, None, 0, 0)
|
||||
## [hough_lines]
|
||||
## [draw_lines]
|
||||
# Draw the lines
|
||||
if lines is not None:
|
||||
for i in range(0, len(lines)):
|
||||
rho = lines[i][0][0]
|
||||
theta = lines[i][0][1]
|
||||
a = math.cos(theta)
|
||||
b = math.sin(theta)
|
||||
x0 = a * rho
|
||||
y0 = b * rho
|
||||
pt1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a)))
|
||||
pt2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a)))
|
||||
|
||||
cv.line(cdst, pt1, pt2, (0,0,255), 3, cv.LINE_AA)
|
||||
## [draw_lines]
|
||||
|
||||
## [hough_lines_p]
|
||||
# Probabilistic Line Transform
|
||||
linesP = cv.HoughLinesP(dst, 1, np.pi / 180, 50, None, 50, 10)
|
||||
## [hough_lines_p]
|
||||
## [draw_lines_p]
|
||||
# Draw the lines
|
||||
if linesP is not None:
|
||||
for i in range(0, len(linesP)):
|
||||
l = linesP[i][0]
|
||||
cv.line(cdstP, (l[0], l[1]), (l[2], l[3]), (0,0,255), 3, cv.LINE_AA)
|
||||
## [draw_lines_p]
|
||||
## [imshow]
|
||||
# Show results
|
||||
cv.imshow("Source", src)
|
||||
cv.imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst)
|
||||
cv.imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP)
|
||||
## [imshow]
|
||||
## [exit]
|
||||
# Wait and Exit
|
||||
cv.waitKey()
|
||||
return 0
|
||||
## [exit]
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(sys.argv[1:])
|
Reference in New Issue
Block a user