// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include #include #include #ifdef _WIN32 #include #include // Sleep() #else #include // sleep() #endif #ifdef __EMSCRIPTEN__ #include #endif #include "benchmark.h" #include "cpu.h" #include "datareader.h" #include "net.h" #include "gpu.h" class DataReaderFromEmpty : public ncnn::DataReader { public: virtual int scan(const char* format, void* p) const { return 0; } virtual size_t read(void* buf, size_t size) const { memset(buf, 0, size); return size; } }; static int g_warmup_loop_count = 8; static int g_loop_count = 4; static bool g_enable_cooling_down = true; static ncnn::UnlockedPoolAllocator g_blob_pool_allocator; static ncnn::PoolAllocator g_workspace_pool_allocator; #if NCNN_VULKAN static ncnn::VulkanDevice* g_vkdev = 0; static ncnn::VkAllocator* g_blob_vkallocator = 0; static ncnn::VkAllocator* g_staging_vkallocator = 0; #endif // NCNN_VULKAN void benchmark(const char* comment, const ncnn::Mat& _in, const ncnn::Option& opt) { ncnn::Mat in = _in; in.fill(0.01f); g_blob_pool_allocator.clear(); g_workspace_pool_allocator.clear(); #if NCNN_VULKAN if (opt.use_vulkan_compute) { g_blob_vkallocator->clear(); g_staging_vkallocator->clear(); } #endif // NCNN_VULKAN ncnn::Net net; net.opt = opt; #if NCNN_VULKAN if (net.opt.use_vulkan_compute) { net.set_vulkan_device(g_vkdev); } #endif // NCNN_VULKAN #ifdef __EMSCRIPTEN__ #define MODEL_DIR "/working/" #else #define MODEL_DIR "" #endif char parampath[256]; sprintf(parampath, MODEL_DIR "%s.param", comment); net.load_param(parampath); DataReaderFromEmpty dr; net.load_model(dr); const std::vector& input_names = net.input_names(); const std::vector& output_names = net.output_names(); if (g_enable_cooling_down) { // sleep 10 seconds for cooling down SOC :( #ifdef _WIN32 Sleep(10 * 1000); #elif defined(__unix__) || defined(__APPLE__) sleep(10); #elif _POSIX_TIMERS struct timespec ts; ts.tv_sec = 10; ts.tv_nsec = 0; nanosleep(&ts, &ts); #else // TODO How to handle it ? #endif } ncnn::Mat out; // warm up for (int i = 0; i < g_warmup_loop_count; i++) { ncnn::Extractor ex = net.create_extractor(); ex.input(input_names[0], in); ex.extract(output_names[0], out); } double time_min = DBL_MAX; double time_max = -DBL_MAX; double time_avg = 0; for (int i = 0; i < g_loop_count; i++) { double start = ncnn::get_current_time(); { ncnn::Extractor ex = net.create_extractor(); ex.input(input_names[0], in); ex.extract(output_names[0], out); } double end = ncnn::get_current_time(); double time = end - start; time_min = std::min(time_min, time); time_max = std::max(time_max, time); time_avg += time; } time_avg /= g_loop_count; fprintf(stderr, "%20s min = %7.2f max = %7.2f avg = %7.2f\n", comment, time_min, time_max, time_avg); } int main(int argc, char** argv) { int loop_count = 4; int num_threads = ncnn::get_cpu_count(); int powersave = 0; int gpu_device = -1; int cooling_down = 1; if (argc >= 2) { loop_count = atoi(argv[1]); } if (argc >= 3) { num_threads = atoi(argv[2]); } if (argc >= 4) { powersave = atoi(argv[3]); } if (argc >= 5) { gpu_device = atoi(argv[4]); } if (argc >= 6) { cooling_down = atoi(argv[5]); } #ifdef __EMSCRIPTEN__ EM_ASM( FS.mkdir('/working'); FS.mount(NODEFS, {root: '.'}, '/working');); #endif // __EMSCRIPTEN__ bool use_vulkan_compute = gpu_device != -1; g_enable_cooling_down = cooling_down != 0; g_loop_count = loop_count; g_blob_pool_allocator.set_size_compare_ratio(0.0f); g_workspace_pool_allocator.set_size_compare_ratio(0.5f); #if NCNN_VULKAN if (use_vulkan_compute) { g_warmup_loop_count = 10; g_vkdev = ncnn::get_gpu_device(gpu_device); g_blob_vkallocator = new ncnn::VkBlobAllocator(g_vkdev); g_staging_vkallocator = new ncnn::VkStagingAllocator(g_vkdev); } #endif // NCNN_VULKAN // default option ncnn::Option opt; opt.lightmode = true; opt.num_threads = num_threads; opt.blob_allocator = &g_blob_pool_allocator; opt.workspace_allocator = &g_workspace_pool_allocator; #if NCNN_VULKAN opt.blob_vkallocator = g_blob_vkallocator; opt.workspace_vkallocator = g_blob_vkallocator; opt.staging_vkallocator = g_staging_vkallocator; #endif // NCNN_VULKAN opt.use_winograd_convolution = true; opt.use_sgemm_convolution = true; opt.use_int8_inference = true; opt.use_vulkan_compute = use_vulkan_compute; opt.use_fp16_packed = true; opt.use_fp16_storage = true; opt.use_fp16_arithmetic = true; opt.use_int8_storage = true; opt.use_int8_arithmetic = true; opt.use_packing_layout = true; opt.use_shader_pack8 = false; opt.use_image_storage = false; ncnn::set_cpu_powersave(powersave); ncnn::set_omp_dynamic(0); ncnn::set_omp_num_threads(num_threads); fprintf(stderr, "loop_count = %d\n", g_loop_count); fprintf(stderr, "num_threads = %d\n", num_threads); fprintf(stderr, "powersave = %d\n", ncnn::get_cpu_powersave()); fprintf(stderr, "gpu_device = %d\n", gpu_device); fprintf(stderr, "cooling_down = %d\n", (int)g_enable_cooling_down); // run benchmark("squeezenet", ncnn::Mat(227, 227, 3), opt); benchmark("squeezenet_int8", ncnn::Mat(227, 227, 3), opt); benchmark("mobilenet", ncnn::Mat(224, 224, 3), opt); benchmark("mobilenet_int8", ncnn::Mat(224, 224, 3), opt); benchmark("mobilenet_v2", ncnn::Mat(224, 224, 3), opt); // benchmark("mobilenet_v2_int8", ncnn::Mat(224, 224, 3), opt); benchmark("mobilenet_v3", ncnn::Mat(224, 224, 3), opt); benchmark("shufflenet", ncnn::Mat(224, 224, 3), opt); benchmark("shufflenet_v2", ncnn::Mat(224, 224, 3), opt); benchmark("mnasnet", ncnn::Mat(224, 224, 3), opt); benchmark("proxylessnasnet", ncnn::Mat(224, 224, 3), opt); benchmark("efficientnet_b0", ncnn::Mat(224, 224, 3), opt); benchmark("efficientnetv2_b0", ncnn::Mat(224, 224, 3), opt); benchmark("regnety_400m", ncnn::Mat(224, 224, 3), opt); benchmark("blazeface", ncnn::Mat(128, 128, 3), opt); benchmark("googlenet", ncnn::Mat(224, 224, 3), opt); benchmark("googlenet_int8", ncnn::Mat(224, 224, 3), opt); benchmark("resnet18", ncnn::Mat(224, 224, 3), opt); benchmark("resnet18_int8", ncnn::Mat(224, 224, 3), opt); benchmark("alexnet", ncnn::Mat(227, 227, 3), opt); benchmark("vgg16", ncnn::Mat(224, 224, 3), opt); benchmark("vgg16_int8", ncnn::Mat(224, 224, 3), opt); benchmark("resnet50", ncnn::Mat(224, 224, 3), opt); benchmark("resnet50_int8", ncnn::Mat(224, 224, 3), opt); benchmark("squeezenet_ssd", ncnn::Mat(300, 300, 3), opt); benchmark("squeezenet_ssd_int8", ncnn::Mat(300, 300, 3), opt); benchmark("mobilenet_ssd", ncnn::Mat(300, 300, 3), opt); benchmark("mobilenet_ssd_int8", ncnn::Mat(300, 300, 3), opt); benchmark("mobilenet_yolo", ncnn::Mat(416, 416, 3), opt); benchmark("mobilenetv2_yolov3", ncnn::Mat(352, 352, 3), opt); benchmark("yolov4-tiny", ncnn::Mat(416, 416, 3), opt); benchmark("nanodet_m", ncnn::Mat(320, 320, 3), opt); benchmark("yolo-fastest-1.1", ncnn::Mat(320, 320, 3), opt); benchmark("yolo-fastestv2", ncnn::Mat(352, 352, 3), opt); #if NCNN_VULKAN delete g_blob_vkallocator; delete g_staging_vkallocator; #endif // NCNN_VULKAN return 0; }