// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "net.h" #if defined(USE_NCNN_SIMPLEOCV) #include "simpleocv.h" #else #include #include #include #endif #include #include struct FaceObject { cv::Rect_ rect; float prob; }; static inline float intersection_area(const FaceObject& a, const FaceObject& b) { cv::Rect_ inter = a.rect & b.rect; return inter.area(); } static void qsort_descent_inplace(std::vector& faceobjects, int left, int right) { int i = left; int j = right; float p = faceobjects[(left + right) / 2].prob; while (i <= j) { while (faceobjects[i].prob > p) i++; while (faceobjects[j].prob < p) j--; if (i <= j) { // swap std::swap(faceobjects[i], faceobjects[j]); i++; j--; } } #pragma omp parallel sections { #pragma omp section { if (left < j) qsort_descent_inplace(faceobjects, left, j); } #pragma omp section { if (i < right) qsort_descent_inplace(faceobjects, i, right); } } } static void qsort_descent_inplace(std::vector& faceobjects) { if (faceobjects.empty()) return; qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1); } static void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold) { picked.clear(); const int n = faceobjects.size(); std::vector areas(n); for (int i = 0; i < n; i++) { areas[i] = faceobjects[i].rect.area(); } for (int i = 0; i < n; i++) { const FaceObject& a = faceobjects[i]; int keep = 1; for (int j = 0; j < (int)picked.size(); j++) { const FaceObject& b = faceobjects[picked[j]]; // intersection over union float inter_area = intersection_area(a, b); float union_area = areas[i] + areas[picked[j]] - inter_area; // float IoU = inter_area / union_area if (inter_area / union_area > nms_threshold) keep = 0; } if (keep) picked.push_back(i); } } // insightface/detection/scrfd/mmdet/core/anchor/anchor_generator.py gen_single_level_base_anchors() static ncnn::Mat generate_anchors(int base_size, const ncnn::Mat& ratios, const ncnn::Mat& scales) { int num_ratio = ratios.w; int num_scale = scales.w; ncnn::Mat anchors; anchors.create(4, num_ratio * num_scale); const float cx = 0; const float cy = 0; for (int i = 0; i < num_ratio; i++) { float ar = ratios[i]; int r_w = round(base_size / sqrt(ar)); int r_h = round(r_w * ar); //round(base_size * sqrt(ar)); for (int j = 0; j < num_scale; j++) { float scale = scales[j]; float rs_w = r_w * scale; float rs_h = r_h * scale; float* anchor = anchors.row(i * num_scale + j); anchor[0] = cx - rs_w * 0.5f; anchor[1] = cy - rs_h * 0.5f; anchor[2] = cx + rs_w * 0.5f; anchor[3] = cy + rs_h * 0.5f; } } return anchors; } static void generate_proposals(const ncnn::Mat& anchors, int feat_stride, const ncnn::Mat& score_blob, const ncnn::Mat& bbox_blob, float prob_threshold, std::vector& faceobjects) { int w = score_blob.w; int h = score_blob.h; // generate face proposal from bbox deltas and shifted anchors const int num_anchors = anchors.h; for (int q = 0; q < num_anchors; q++) { const float* anchor = anchors.row(q); const ncnn::Mat score = score_blob.channel(q); const ncnn::Mat bbox = bbox_blob.channel_range(q * 4, 4); // shifted anchor float anchor_y = anchor[1]; float anchor_w = anchor[2] - anchor[0]; float anchor_h = anchor[3] - anchor[1]; for (int i = 0; i < h; i++) { float anchor_x = anchor[0]; for (int j = 0; j < w; j++) { int index = i * w + j; float prob = score[index]; if (prob >= prob_threshold) { // insightface/detection/scrfd/mmdet/models/dense_heads/scrfd_head.py _get_bboxes_single() float dx = bbox.channel(0)[index] * feat_stride; float dy = bbox.channel(1)[index] * feat_stride; float dw = bbox.channel(2)[index] * feat_stride; float dh = bbox.channel(3)[index] * feat_stride; // insightface/detection/scrfd/mmdet/core/bbox/transforms.py distance2bbox() float cx = anchor_x + anchor_w * 0.5f; float cy = anchor_y + anchor_h * 0.5f; float x0 = cx - dx; float y0 = cy - dy; float x1 = cx + dw; float y1 = cy + dh; FaceObject obj; obj.rect.x = x0; obj.rect.y = y0; obj.rect.width = x1 - x0 + 1; obj.rect.height = y1 - y0 + 1; obj.prob = prob; faceobjects.push_back(obj); } anchor_x += feat_stride; } anchor_y += feat_stride; } } } static int detect_scrfd(const cv::Mat& bgr, std::vector& faceobjects) { ncnn::Net scrfd; scrfd.opt.use_vulkan_compute = true; // model is converted from // https://github.com/deepinsight/insightface/tree/master/detection/scrfd // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models scrfd.load_param("scrfd_500m-opt2.param"); scrfd.load_model("scrfd_500m-opt2.bin"); int width = bgr.cols; int height = bgr.rows; // insightface/detection/scrfd/configs/scrfd/scrfd_500m.py const int target_size = 640; const float prob_threshold = 0.3f; const float nms_threshold = 0.45f; // pad to multiple of 32 int w = width; int h = height; float scale = 1.f; if (w > h) { scale = (float)target_size / w; w = target_size; h = h * scale; } else { scale = (float)target_size / h; h = target_size; w = w * scale; } ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, width, height, w, h); // pad to target_size rectangle int wpad = (w + 31) / 32 * 32 - w; int hpad = (h + 31) / 32 * 32 - h; ncnn::Mat in_pad; ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 0.f); const float mean_vals[3] = {127.5f, 127.5f, 127.5f}; const float norm_vals[3] = {1 / 128.f, 1 / 128.f, 1 / 128.f}; in_pad.substract_mean_normalize(mean_vals, norm_vals); ncnn::Extractor ex = scrfd.create_extractor(); ex.input("input.1", in_pad); std::vector faceproposals; // stride 32 { ncnn::Mat score_blob, bbox_blob; ex.extract("412", score_blob); ex.extract("415", bbox_blob); const int base_size = 16; const int feat_stride = 8; ncnn::Mat ratios(1); ratios[0] = 1.f; ncnn::Mat scales(2); scales[0] = 1.f; scales[1] = 2.f; ncnn::Mat anchors = generate_anchors(base_size, ratios, scales); std::vector faceobjects32; generate_proposals(anchors, feat_stride, score_blob, bbox_blob, prob_threshold, faceobjects32); faceproposals.insert(faceproposals.end(), faceobjects32.begin(), faceobjects32.end()); } // stride 16 { ncnn::Mat score_blob, bbox_blob; ex.extract("474", score_blob); ex.extract("477", bbox_blob); const int base_size = 64; const int feat_stride = 16; ncnn::Mat ratios(1); ratios[0] = 1.f; ncnn::Mat scales(2); scales[0] = 1.f; scales[1] = 2.f; ncnn::Mat anchors = generate_anchors(base_size, ratios, scales); std::vector faceobjects16; generate_proposals(anchors, feat_stride, score_blob, bbox_blob, prob_threshold, faceobjects16); faceproposals.insert(faceproposals.end(), faceobjects16.begin(), faceobjects16.end()); } // stride 8 { ncnn::Mat score_blob, bbox_blob; ex.extract("536", score_blob); ex.extract("539", bbox_blob); const int base_size = 256; const int feat_stride = 32; ncnn::Mat ratios(1); ratios[0] = 1.f; ncnn::Mat scales(2); scales[0] = 1.f; scales[1] = 2.f; ncnn::Mat anchors = generate_anchors(base_size, ratios, scales); std::vector faceobjects8; generate_proposals(anchors, feat_stride, score_blob, bbox_blob, prob_threshold, faceobjects8); faceproposals.insert(faceproposals.end(), faceobjects8.begin(), faceobjects8.end()); } // sort all proposals by score from highest to lowest qsort_descent_inplace(faceproposals); // apply nms with nms_threshold std::vector picked; nms_sorted_bboxes(faceproposals, picked, nms_threshold); int face_count = picked.size(); faceobjects.resize(face_count); for (int i = 0; i < face_count; i++) { faceobjects[i] = faceproposals[picked[i]]; // adjust offset to original unpadded float x0 = (faceobjects[i].rect.x - (wpad / 2)) / scale; float y0 = (faceobjects[i].rect.y - (hpad / 2)) / scale; float x1 = (faceobjects[i].rect.x + faceobjects[i].rect.width - (wpad / 2)) / scale; float y1 = (faceobjects[i].rect.y + faceobjects[i].rect.height - (hpad / 2)) / scale; x0 = std::max(std::min(x0, (float)width - 1), 0.f); y0 = std::max(std::min(y0, (float)height - 1), 0.f); x1 = std::max(std::min(x1, (float)width - 1), 0.f); y1 = std::max(std::min(y1, (float)height - 1), 0.f); faceobjects[i].rect.x = x0; faceobjects[i].rect.y = y0; faceobjects[i].rect.width = x1 - x0; faceobjects[i].rect.height = y1 - y0; } return 0; } static void draw_faceobjects(const cv::Mat& bgr, const std::vector& faceobjects) { cv::Mat image = bgr.clone(); for (size_t i = 0; i < faceobjects.size(); i++) { const FaceObject& obj = faceobjects[i]; fprintf(stderr, "%.5f at %.2f %.2f %.2f x %.2f\n", obj.prob, obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); cv::rectangle(image, obj.rect, cv::Scalar(0, 255, 0)); char text[256]; sprintf(text, "%.1f%%", obj.prob * 100); int baseLine = 0; cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); int x = obj.rect.x; int y = obj.rect.y - label_size.height - baseLine; if (y < 0) y = 0; if (x + label_size.width > image.cols) x = image.cols - label_size.width; cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), cv::Scalar(255, 255, 255), -1); cv::putText(image, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); } cv::imshow("image", image); cv::waitKey(0); } int main(int argc, char** argv) { if (argc != 2) { fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); return -1; } const char* imagepath = argv[1]; cv::Mat m = cv::imread(imagepath, 1); if (m.empty()) { fprintf(stderr, "cv::imread %s failed\n", imagepath); return -1; } std::vector faceobjects; detect_scrfd(m, faceobjects); draw_faceobjects(m, faceobjects); return 0; }