# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import sys import cv2 import numpy as np import ncnn from ncnn.model_zoo import get_model from ncnn.utils import draw_detection_objects def draw_result(image, class_names, boxes, masks, classes, scores): colors = [ [56, 0, 255], [226, 255, 0], [0, 94, 255], [0, 37, 255], [0, 255, 94], [255, 226, 0], [0, 18, 255], [255, 151, 0], [170, 0, 255], [0, 255, 56], [255, 0, 75], [0, 75, 255], [0, 255, 169], [255, 0, 207], [75, 255, 0], [207, 0, 255], [37, 0, 255], [0, 207, 255], [94, 0, 255], [0, 255, 113], [255, 18, 0], [255, 0, 56], [18, 0, 255], [0, 255, 226], [170, 255, 0], [255, 0, 245], [151, 255, 0], [132, 255, 0], [75, 0, 255], [151, 0, 255], [0, 151, 255], [132, 0, 255], [0, 255, 245], [255, 132, 0], [226, 0, 255], [255, 37, 0], [207, 255, 0], [0, 255, 207], [94, 255, 0], [0, 226, 255], [56, 255, 0], [255, 94, 0], [255, 113, 0], [0, 132, 255], [255, 0, 132], [255, 170, 0], [255, 0, 188], [113, 255, 0], [245, 0, 255], [113, 0, 255], [255, 188, 0], [0, 113, 255], [255, 0, 0], [0, 56, 255], [255, 0, 113], [0, 255, 188], [255, 0, 94], [255, 0, 18], [18, 255, 0], [0, 255, 132], [0, 188, 255], [0, 245, 255], [0, 169, 255], [37, 255, 0], [255, 0, 151], [188, 0, 255], [0, 255, 37], [0, 255, 0], [255, 0, 170], [255, 0, 37], [255, 75, 0], [0, 0, 255], [255, 207, 0], [255, 0, 226], [255, 245, 0], [188, 255, 0], [0, 255, 18], [0, 255, 75], [0, 255, 151], [255, 56, 0], [245, 255, 0], ] color_index = 0 for box, mask, label, score in zip(boxes, masks, classes, scores): if score < 0.15: continue print( "%s = %.5f at %.2f %.2f %.2f x %.2f\n" % (label, score, box[0], box[1], box[2], box[3]) ) cv2.rectangle( image, (int(box[0]), int(box[1])), (int(box[0] + box[2]), int(int(box[1] + box[3]))), (255, 0, 0), ) text = "%s %.1f%%" % (class_names[int(label)], score * 100) label_size, baseLine = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) x = box[0] y = box[1] - label_size[1] - baseLine if y < 0: y = 0 if x + label_size[0] > image.shape[1]: x = image.shape[1] - label_size[0] cv2.rectangle( image, (int(x), int(y)), (int(x + label_size[0]), int(y + label_size[1] + baseLine)), (255, 255, 255), -1, ) cv2.putText( image, text, (int(x), int(y + label_size[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), ) image[mask] = image[mask] * 0.5 + np.array(colors[color_index]) * 0.5 color_index += 1 cv2.imshow("image", image) cv2.waitKey(0) if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: %s [imagepath]" % (sys.argv[0])) sys.exit(0) imagepath = sys.argv[1] m = cv2.imread(imagepath) if m is None: print("cv2.imread %s failed\n" % (imagepath)) sys.exit(0) net = get_model( "yolact", target_size=550, confidence_threshold=0.05, nms_threshold=0.5, keep_top_k=200, num_threads=4, use_gpu=True, ) boxes, masks, classes, scores = net(m) draw_result(m, net.class_names, boxes, masks, classes, scores)