// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #ifndef TESTUTIL_H #define TESTUTIL_H #include "cpu.h" #include "layer.h" #include "mat.h" #include "prng.h" #include #include #include #if NCNN_VULKAN #include "command.h" #include "gpu.h" #endif // NCNN_VULKAN static struct prng_rand_t g_prng_rand_state; #if NCNN_VULKAN class GlobalGpuInstance { public: GlobalGpuInstance() { ncnn::create_gpu_instance(); } ~GlobalGpuInstance() { ncnn::destroy_gpu_instance(); } }; // HACK workaround nvidia driver crash on exit #define SRAND(seed) \ GlobalGpuInstance __ncnn_gpu_instance_guard; \ prng_srand(seed, &g_prng_rand_state) #define RAND() prng_rand(&g_prng_rand_state) #else // NCNN_VULKAN #define SRAND(seed) prng_srand(seed, &g_prng_rand_state) #define RAND() prng_rand(&g_prng_rand_state) #endif // NCNN_VULKAN #define TEST_LAYER_DISABLE_AUTO_INPUT_PACKING (1 << 0) #define TEST_LAYER_DISABLE_AUTO_INPUT_CASTING (1 << 1) #define TEST_LAYER_DISABLE_GPU_TESTING (1 << 2) #define TEST_LAYER_ENABLE_FORCE_INPUT_PACK8 (1 << 3) static float RandomFloat(float a = -1.2f, float b = 1.2f) { float random = ((float)RAND()) / (float)uint64_t(-1); //RAND_MAX; float diff = b - a; float r = random * diff; return a + r; } static int RandomInt(int a = -10000, int b = 10000) { float random = ((float)RAND()) / (float)uint64_t(-1); //RAND_MAX; int diff = b - a; float r = random * diff; return a + (int)r; } static signed char RandomS8() { return (signed char)RandomInt(-127, 127); } static void Randomize(ncnn::Mat& m, float a = -1.2f, float b = 1.2f) { for (size_t i = 0; i < m.total(); i++) { m[i] = RandomFloat(a, b); } } static void RandomizeInt(ncnn::Mat& m, int a = -10000, int b = 10000) { for (size_t i = 0; i < m.total(); i++) { ((int*)m)[i] = RandomInt(a, b); } } static void RandomizeS8(ncnn::Mat& m) { for (size_t i = 0; i < m.total(); i++) { ((signed char*)m)[i] = RandomS8(); } } static ncnn::Mat RandomMat(int w) { ncnn::Mat m(w); Randomize(m); return m; } static ncnn::Mat RandomMat(int w, int h) { ncnn::Mat m(w, h); Randomize(m); return m; } static ncnn::Mat RandomMat(int w, int h, int c) { ncnn::Mat m(w, h, c); Randomize(m); return m; } static ncnn::Mat RandomMat(int w, int h, int d, int c) { ncnn::Mat m(w, h, d, c); Randomize(m); return m; } static ncnn::Mat RandomIntMat(int w) { ncnn::Mat m(w); RandomizeInt(m); return m; } static ncnn::Mat RandomIntMat(int w, int h) { ncnn::Mat m(w, h); RandomizeInt(m); return m; } static ncnn::Mat RandomIntMat(int w, int h, int c) { ncnn::Mat m(w, h, c); RandomizeInt(m); return m; } static ncnn::Mat RandomIntMat(int w, int h, int d, int c) { ncnn::Mat m(w, h, d, c); RandomizeInt(m); return m; } static ncnn::Mat RandomS8Mat(int w) { ncnn::Mat m(w, (size_t)1u); RandomizeS8(m); return m; } static ncnn::Mat RandomS8Mat(int w, int h) { ncnn::Mat m(w, h, (size_t)1u); RandomizeS8(m); return m; } static ncnn::Mat RandomS8Mat(int w, int h, int c) { ncnn::Mat m(w, h, c, (size_t)1u); RandomizeS8(m); return m; } static ncnn::Mat RandomS8Mat(int w, int h, int d, int c) { ncnn::Mat m(w, h, d, c, (size_t)1u); RandomizeS8(m); return m; } static ncnn::Mat scales_mat(const ncnn::Mat& mat, int m, int k, int ldx) { ncnn::Mat weight_scales(m); for (int i = 0; i < m; ++i) { float min = mat[0], _max = mat[0]; const float* ptr = (const float*)(mat.data) + i * ldx; for (int j = 0; j < k; ++j) { if (min > ptr[j]) { min = ptr[j]; } if (_max < ptr[j]) { _max = ptr[j]; } } const float abs_min = abs(min), abs_max = abs(_max); weight_scales[i] = 127.f / (abs_min > abs_max ? abs_min : abs_max); } return weight_scales; } static bool NearlyEqual(float a, float b, float epsilon) { if (a == b) return true; float diff = (float)fabs(a - b); if (diff <= epsilon) return true; // relative error return diff < epsilon * std::max(fabs(a), fabs(b)); } static int Compare(const ncnn::Mat& a, const ncnn::Mat& b, float epsilon = 0.001) { #define CHECK_MEMBER(m) \ if (a.m != b.m) \ { \ fprintf(stderr, #m " not match expect %d but got %d\n", (int)a.m, (int)b.m); \ return -1; \ } CHECK_MEMBER(dims) CHECK_MEMBER(w) CHECK_MEMBER(h) CHECK_MEMBER(d) CHECK_MEMBER(c) CHECK_MEMBER(elemsize) CHECK_MEMBER(elempack) #undef CHECK_MEMBER for (int q = 0; q < a.c; q++) { const ncnn::Mat ma = a.channel(q); const ncnn::Mat mb = b.channel(q); for (int z = 0; z < a.d; z++) { const ncnn::Mat da = ma.depth(z); const ncnn::Mat db = mb.depth(z); for (int i = 0; i < a.h; i++) { const float* pa = da.row(i); const float* pb = db.row(i); for (int j = 0; j < a.w; j++) { if (!NearlyEqual(pa[j], pb[j], epsilon)) { fprintf(stderr, "value not match at c:%d d:%d h:%d w:%d expect %f but got %f\n", q, z, i, j, pa[j], pb[j]); return -1; } } } } } return 0; } static int CompareMat(const ncnn::Mat& a, const ncnn::Mat& b, float epsilon = 0.001) { ncnn::Option opt; opt.num_threads = 1; if (a.elempack != 1) { ncnn::Mat a1; ncnn::convert_packing(a, a1, 1, opt); return CompareMat(a1, b, epsilon); } if (b.elempack != 1) { ncnn::Mat b1; ncnn::convert_packing(b, b1, 1, opt); return CompareMat(a, b1, epsilon); } if (a.elemsize == 2u) { ncnn::Mat a32; cast_float16_to_float32(a, a32, opt); return CompareMat(a32, b, epsilon); } if (a.elemsize == 1u) { ncnn::Mat a32; cast_int8_to_float32(a, a32, opt); return CompareMat(a32, b, epsilon); } if (b.elemsize == 2u) { ncnn::Mat b32; cast_float16_to_float32(b, b32, opt); return CompareMat(a, b32, epsilon); } if (b.elemsize == 1u) { ncnn::Mat b32; cast_int8_to_float32(b, b32, opt); return CompareMat(a, b32, epsilon); } return Compare(a, b, epsilon); } static int CompareMat(const std::vector& a, const std::vector& b, float epsilon = 0.001) { if (a.size() != b.size()) { fprintf(stderr, "output blob count not match %zu %zu\n", a.size(), b.size()); return -1; } for (size_t i = 0; i < a.size(); i++) { if (CompareMat(a[i], b[i], epsilon)) { fprintf(stderr, "output blob %zu not match\n", i); return -1; } } return 0; } template int test_layer_naive(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const std::vector& a, int top_blob_count, std::vector& b, void (*func)(T*), int flag) { ncnn::Layer* op = ncnn::create_layer(typeindex); if (func) { (*func)((T*)op); } op->load_param(pd); if (op->one_blob_only && a.size() != 1) { fprintf(stderr, "layer with one_blob_only but consume multiple inputs\n"); delete op; return -1; } ncnn::ModelBinFromMatArray mb(weights.data()); op->load_model(mb); ncnn::Option opt; opt.num_threads = 1; opt.use_packing_layout = false; opt.use_fp16_packed = false; opt.use_fp16_storage = false; opt.use_fp16_arithmetic = false; opt.use_shader_pack8 = false; opt.use_image_storage = false; opt.use_bf16_storage = false; opt.use_vulkan_compute = false; op->create_pipeline(opt); b.resize(top_blob_count); if (op->support_inplace) { for (size_t i = 0; i < a.size(); i++) { b[i] = a[i].clone(); } ((T*)op)->T::forward_inplace(b, opt); } else { ((T*)op)->T::forward(a, b, opt); } op->destroy_pipeline(opt); delete op; return 0; } template int test_layer_cpu(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Option& _opt, const std::vector& a, int top_blob_count, std::vector& c, const std::vector& top_shapes, void (*func)(T*), int flag) { ncnn::Layer* op = ncnn::create_layer(typeindex); if (func) { (*func)((T*)op); } if (!top_shapes.empty()) { op->bottom_shapes = a; op->top_shapes = top_shapes; } op->load_param(pd); if (op->one_blob_only && a.size() != 1) { fprintf(stderr, "layer with one_blob_only but consume multiple inputs\n"); delete op; return -1; } ncnn::ModelBinFromMatArray mb(weights.data()); op->load_model(mb); ncnn::Option opt = _opt; opt.num_threads = 1; opt.use_vulkan_compute = false; op->create_pipeline(opt); std::vector a4(a.size()); for (size_t i = 0; i < a4.size(); i++) { if (opt.use_fp16_storage && op->support_fp16_storage && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { ncnn::cast_float32_to_float16(a[i], a4[i], opt); } else if (opt.use_bf16_storage && op->support_bf16_storage && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { ncnn::cast_float32_to_bfloat16(a[i], a4[i], opt); } else { a4[i] = a[i]; } if (opt.use_packing_layout && op->support_packing && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_PACKING)) { // resolve dst_elempack int dims = a4[i].dims; int elemcount = 0; if (dims == 1) elemcount = a4[i].elempack * a4[i].w; if (dims == 2) elemcount = a4[i].elempack * a4[i].h; if (dims == 3 || dims == 4) elemcount = a4[i].elempack * a4[i].c; int elembits = a4[i].elembits(); int dst_elempack = 1; if (elembits == 32) { #if NCNN_AVX512 if (elemcount % 16 == 0 && ncnn::cpu_support_x86_avx512()) dst_elempack = 16; else if (elemcount % 8 == 0 && ncnn::cpu_support_x86_avx()) dst_elempack = 8; else if (elemcount % 4 == 0) dst_elempack = 4; #elif NCNN_AVX if (elemcount % 8 == 0 && ncnn::cpu_support_x86_avx()) dst_elempack = 8; else if (elemcount % 4 == 0) dst_elempack = 4; #elif NCNN_RVV const int packn = ncnn::cpu_riscv_vlenb() / (elembits / 8); if (elemcount % packn == 0) dst_elempack = packn; #else if (elemcount % 4 == 0) dst_elempack = 4; #endif } if (elembits == 16) { #if NCNN_ARM82 if (elemcount % 8 == 0 && opt.use_fp16_storage && opt.use_fp16_arithmetic && op->support_fp16_storage) dst_elempack = 8; else if (elemcount % 4 == 0) dst_elempack = 4; #elif NCNN_RVV const int packn = ncnn::cpu_riscv_vlenb() / 2; if (elemcount % packn == 0) dst_elempack = packn; #else if (elemcount % 4 == 0) dst_elempack = 4; #endif } if (elembits == 8) { #if NCNN_RVV const int packn = ncnn::cpu_riscv_vlenb() / 1; if (elemcount % packn == 0) dst_elempack = packn; #else if (elemcount % 8 == 0) dst_elempack = 8; #endif } if (flag & TEST_LAYER_ENABLE_FORCE_INPUT_PACK8) dst_elempack = 8; ncnn::Mat a4_packed; ncnn::convert_packing(a4[i], a4_packed, dst_elempack, opt); a4[i] = a4_packed; } } c.resize(top_blob_count); if (op->support_inplace) { for (size_t i = 0; i < a4.size(); i++) { c[i] = a4[i].clone(); } op->forward_inplace(c, opt); } else { op->forward(a4, c, opt); } for (size_t i = 0; i < c.size(); i++) { if (opt.use_fp16_storage && op->support_fp16_storage && c[i].elembits() == 16) { ncnn::Mat c_fp32; ncnn::cast_float16_to_float32(c[i], c_fp32, opt); c[i] = c_fp32; } else if (opt.use_bf16_storage && op->support_bf16_storage && c[i].elembits() == 16) { ncnn::Mat c_fp32; ncnn::cast_bfloat16_to_float32(c[i], c_fp32, opt); c[i] = c_fp32; } } op->destroy_pipeline(opt); delete op; return 0; } #if NCNN_VULKAN template int test_layer_gpu(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Option& _opt, const std::vector& a, int top_blob_count, std::vector& d, const std::vector& top_shapes, void (*func)(T*), int flag) { ncnn::Layer* op = ncnn::create_layer(typeindex); if (!op->support_vulkan) { delete op; return 233; } ncnn::VulkanDevice* vkdev = ncnn::get_gpu_device(); op->vkdev = vkdev; if (func) { (*func)((T*)op); } if (!top_shapes.empty()) { op->bottom_shapes = a; op->top_shapes = top_shapes; } op->load_param(pd); if (op->one_blob_only && a.size() != 1) { fprintf(stderr, "layer with one_blob_only but consume multiple inputs\n"); delete op; return -1; } ncnn::ModelBinFromMatArray mb(weights.data()); op->load_model(mb); ncnn::VkWeightAllocator g_weight_vkallocator(vkdev); ncnn::VkWeightStagingAllocator g_weight_staging_vkallocator(vkdev); ncnn::VkAllocator* blob_vkallocator = vkdev->acquire_blob_allocator(); ncnn::VkAllocator* staging_vkallocator = vkdev->acquire_staging_allocator(); ncnn::Option opt = _opt; opt.num_threads = 1; opt.use_vulkan_compute = true; #if __APPLE__ opt.use_image_storage = false; #endif opt.blob_vkallocator = blob_vkallocator; opt.workspace_vkallocator = blob_vkallocator; opt.staging_vkallocator = staging_vkallocator; if (!vkdev->info.support_fp16_packed()) opt.use_fp16_packed = false; if (!vkdev->info.support_fp16_storage()) opt.use_fp16_storage = false; if (!vkdev->info.support_fp16_arithmetic()) opt.use_fp16_arithmetic = false; // FIXME fp16a may produce large error opt.use_fp16_arithmetic = false; op->create_pipeline(opt); if (!op->support_vulkan) { delete op; return 233; } { ncnn::VkTransfer cmd(vkdev); ncnn::Option opt_upload = opt; opt_upload.blob_vkallocator = &g_weight_vkallocator; opt_upload.workspace_vkallocator = &g_weight_vkallocator; opt_upload.staging_vkallocator = &g_weight_staging_vkallocator; op->upload_model(cmd, opt_upload); cmd.submit_and_wait(); } d.resize(top_blob_count); { // forward ncnn::VkCompute cmd(vkdev); if (op->support_image_storage && opt.use_image_storage) { // upload std::vector a_gpu(a.size()); for (size_t i = 0; i < a_gpu.size(); i++) { cmd.record_upload(a[i], a_gpu[i], opt); } std::vector d_gpu(top_blob_count); if (op->support_inplace) { op->forward_inplace(a_gpu, cmd, opt); d_gpu = a_gpu; } else { op->forward(a_gpu, d_gpu, cmd, opt); } // download for (size_t i = 0; i < d_gpu.size(); i++) { cmd.record_download(d_gpu[i], d[i], opt); } } else { // upload std::vector a_gpu(a.size()); for (size_t i = 0; i < a_gpu.size(); i++) { cmd.record_upload(a[i], a_gpu[i], opt); } std::vector d_gpu(top_blob_count); if (op->support_inplace) { op->forward_inplace(a_gpu, cmd, opt); d_gpu = a_gpu; } else { op->forward(a_gpu, d_gpu, cmd, opt); } // download for (size_t i = 0; i < d_gpu.size(); i++) { cmd.record_download(d_gpu[i], d[i], opt); } } cmd.submit_and_wait(); } op->destroy_pipeline(opt); delete op; vkdev->reclaim_blob_allocator(blob_vkallocator); vkdev->reclaim_staging_allocator(staging_vkallocator); g_weight_vkallocator.clear(); g_weight_staging_vkallocator.clear(); return 0; } #endif // NCNN_VULKAN template int test_layer(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Option& _opt, const std::vector& a, int top_blob_count, const std::vector& top_shapes = std::vector(), float epsilon = 0.001, void (*func)(T*) = 0, int flag = 0) { // naive std::vector b; { int ret = test_layer_naive(typeindex, pd, weights, a, top_blob_count, b, func, flag); if (ret != 0) { fprintf(stderr, "test_layer_naive failed\n"); return -1; } } // cpu { std::vector c; int ret = test_layer_cpu(typeindex, pd, weights, _opt, a, top_blob_count, c, std::vector(), func, flag); if (ret != 0 || CompareMat(b, c, epsilon) != 0) { fprintf(stderr, "test_layer_cpu failed\n"); return -1; } } // cpu shape hint { std::vector c; int ret = test_layer_cpu(typeindex, pd, weights, _opt, a, top_blob_count, c, b, func, flag); if (ret != 0 || CompareMat(b, c, epsilon) != 0) { fprintf(stderr, "test_layer_cpu failed with shape hint\n"); return -1; } } #if NCNN_VULKAN // gpu if (!(flag & TEST_LAYER_DISABLE_GPU_TESTING)) { std::vector d; int ret = test_layer_gpu(typeindex, pd, weights, _opt, a, top_blob_count, d, std::vector(), func, flag); if (ret != 233 && (ret != 0 || CompareMat(b, d, epsilon) != 0)) { fprintf(stderr, "test_layer_gpu failed\n"); return -1; } } // gpu shape hint if (!(flag & TEST_LAYER_DISABLE_GPU_TESTING)) { std::vector d; int ret = test_layer_gpu(typeindex, pd, weights, _opt, a, top_blob_count, d, b, func, flag); if (ret != 233 && (ret != 0 || CompareMat(b, d, epsilon) != 0)) { fprintf(stderr, "test_layer_gpu failed with shape hint\n"); return -1; } } #endif // NCNN_VULKAN return 0; } template int test_layer_naive(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Mat& a, ncnn::Mat& b, void (*func)(T*), int flag) { ncnn::Layer* op = ncnn::create_layer(typeindex); if (func) { (*func)((T*)op); } op->load_param(pd); ncnn::ModelBinFromMatArray mb(weights.data()); op->load_model(mb); ncnn::Option opt; opt.num_threads = 1; opt.use_packing_layout = false; opt.use_fp16_packed = false; opt.use_fp16_storage = false; opt.use_fp16_arithmetic = false; opt.use_shader_pack8 = false; opt.use_image_storage = false; opt.use_bf16_storage = false; opt.use_vulkan_compute = false; op->create_pipeline(opt); if (op->support_inplace) { b = a.clone(); ((T*)op)->T::forward_inplace(b, opt); } else { ((T*)op)->T::forward(a, b, opt); } op->destroy_pipeline(opt); delete op; return 0; } template int test_layer_cpu(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Option& _opt, const ncnn::Mat& a, ncnn::Mat& c, const ncnn::Mat& top_shape, void (*func)(T*), int flag) { ncnn::Layer* op = ncnn::create_layer(typeindex); if (func) { (*func)((T*)op); } if (top_shape.dims) { op->bottom_shapes.resize(1); op->top_shapes.resize(1); op->bottom_shapes[0] = a; op->top_shapes[0] = top_shape; } op->load_param(pd); ncnn::ModelBinFromMatArray mb(weights.data()); op->load_model(mb); ncnn::Option opt = _opt; opt.num_threads = 1; opt.use_vulkan_compute = false; op->create_pipeline(opt); ncnn::Mat a4; if (opt.use_fp16_storage && op->support_fp16_storage && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { ncnn::cast_float32_to_float16(a, a4, opt); } else if (opt.use_bf16_storage && op->support_bf16_storage && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { ncnn::cast_float32_to_bfloat16(a, a4, opt); } else { a4 = a; } if (opt.use_packing_layout && op->support_packing && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_PACKING)) { // resolve dst_elempack int dims = a4.dims; int elemcount = 0; if (dims == 1) elemcount = a4.elempack * a4.w; if (dims == 2) elemcount = a4.elempack * a4.h; if (dims == 3 || dims == 4) elemcount = a4.elempack * a4.c; int elembits = a4.elembits(); int dst_elempack = 1; if (elembits == 32) { #if NCNN_AVX512 if (elemcount % 16 == 0 && ncnn::cpu_support_x86_avx512()) dst_elempack = 16; else if (elemcount % 8 == 0 && ncnn::cpu_support_x86_avx()) dst_elempack = 8; else if (elemcount % 4 == 0) dst_elempack = 4; #elif NCNN_AVX if (elemcount % 8 == 0 && ncnn::cpu_support_x86_avx()) dst_elempack = 8; else if (elemcount % 4 == 0) dst_elempack = 4; #elif NCNN_RVV const int packn = ncnn::cpu_riscv_vlenb() / (elembits / 8); if (elemcount % packn == 0) dst_elempack = packn; #else if (elemcount % 4 == 0) dst_elempack = 4; #endif } if (elembits == 16) { #if NCNN_ARM82 if (elemcount % 8 == 0 && opt.use_fp16_storage && opt.use_fp16_arithmetic && op->support_fp16_storage) dst_elempack = 8; else if (elemcount % 4 == 0) dst_elempack = 4; #elif NCNN_RVV const int packn = ncnn::cpu_riscv_vlenb() / 2; if (elemcount % packn == 0) dst_elempack = packn; #else if (elemcount % 4 == 0) dst_elempack = 4; #endif } if (elembits == 8) { #if NCNN_RVV const int packn = ncnn::cpu_riscv_vlenb() / 1; if (elemcount % packn == 0) dst_elempack = packn; #else if (elemcount % 8 == 0) dst_elempack = 8; #endif } if (flag & TEST_LAYER_ENABLE_FORCE_INPUT_PACK8) dst_elempack = 8; ncnn::Mat a4_packed; ncnn::convert_packing(a4, a4_packed, dst_elempack, opt); a4 = a4_packed; } if (op->support_inplace) { c = a4.clone(); op->forward_inplace(c, opt); } else { op->forward(a4, c, opt); } if (opt.use_fp16_storage && op->support_fp16_storage && c.elembits() == 16) { ncnn::Mat c_fp32; ncnn::cast_float16_to_float32(c, c_fp32, opt); c = c_fp32; } else if (opt.use_bf16_storage && op->support_bf16_storage && c.elembits() == 16) { ncnn::Mat c_fp32; ncnn::cast_bfloat16_to_float32(c, c_fp32, opt); c = c_fp32; } op->destroy_pipeline(opt); delete op; return 0; } #if NCNN_VULKAN template int test_layer_gpu(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Option& _opt, const ncnn::Mat& a, ncnn::Mat& d, const ncnn::Mat& top_shape, void (*func)(T*), int flag) { ncnn::Layer* op = ncnn::create_layer(typeindex); if (!op->support_vulkan) { delete op; return 233; } ncnn::VulkanDevice* vkdev = ncnn::get_gpu_device(); op->vkdev = vkdev; if (func) { (*func)((T*)op); } if (top_shape.dims) { op->bottom_shapes.resize(1); op->top_shapes.resize(1); op->bottom_shapes[0] = a; op->top_shapes[0] = top_shape; } op->load_param(pd); ncnn::ModelBinFromMatArray mb(weights.data()); op->load_model(mb); ncnn::VkWeightAllocator g_weight_vkallocator(vkdev); ncnn::VkWeightStagingAllocator g_weight_staging_vkallocator(vkdev); ncnn::VkAllocator* blob_vkallocator = vkdev->acquire_blob_allocator(); ncnn::VkAllocator* staging_vkallocator = vkdev->acquire_staging_allocator(); ncnn::Option opt = _opt; opt.num_threads = 1; opt.use_vulkan_compute = true; #if __APPLE__ opt.use_image_storage = false; #endif opt.blob_vkallocator = blob_vkallocator; opt.workspace_vkallocator = blob_vkallocator; opt.staging_vkallocator = staging_vkallocator; if (!vkdev->info.support_fp16_packed()) opt.use_fp16_packed = false; if (!vkdev->info.support_fp16_storage()) opt.use_fp16_storage = false; if (!vkdev->info.support_fp16_arithmetic()) opt.use_fp16_arithmetic = false; // FIXME fp16a may produce large error opt.use_fp16_arithmetic = false; op->create_pipeline(opt); if (!op->support_vulkan) { delete op; return 233; } { ncnn::VkTransfer cmd(vkdev); ncnn::Option opt_upload = opt; opt_upload.blob_vkallocator = &g_weight_vkallocator; opt_upload.workspace_vkallocator = &g_weight_vkallocator; opt_upload.staging_vkallocator = &g_weight_staging_vkallocator; op->upload_model(cmd, opt_upload); cmd.submit_and_wait(); } { // forward ncnn::VkCompute cmd(vkdev); if (op->support_image_storage && opt.use_image_storage) { // upload ncnn::VkImageMat a_gpu; cmd.record_upload(a, a_gpu, opt); ncnn::VkImageMat d_gpu; if (op->support_inplace) { op->forward_inplace(a_gpu, cmd, opt); d_gpu = a_gpu; } else { op->forward(a_gpu, d_gpu, cmd, opt); } // download cmd.record_download(d_gpu, d, opt); } else { // upload ncnn::VkMat a_gpu; cmd.record_upload(a, a_gpu, opt); ncnn::VkMat d_gpu; if (op->support_inplace) { op->forward_inplace(a_gpu, cmd, opt); d_gpu = a_gpu; } else { op->forward(a_gpu, d_gpu, cmd, opt); } // download cmd.record_download(d_gpu, d, opt); } cmd.submit_and_wait(); } op->destroy_pipeline(opt); delete op; vkdev->reclaim_blob_allocator(blob_vkallocator); vkdev->reclaim_staging_allocator(staging_vkallocator); g_weight_vkallocator.clear(); g_weight_staging_vkallocator.clear(); return 0; } #endif // NCNN_VULKAN template int test_layer(int typeindex, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Option& _opt, const ncnn::Mat& a, const ncnn::Mat& top_shape = ncnn::Mat(), float epsilon = 0.001, void (*func)(T*) = 0, int flag = 0) { // naive ncnn::Mat b; { int ret = test_layer_naive(typeindex, pd, weights, a, b, func, flag); if (ret != 0) { fprintf(stderr, "test_layer_naive failed\n"); return -1; } } // cpu { ncnn::Mat c; int ret = test_layer_cpu(typeindex, pd, weights, _opt, a, c, ncnn::Mat(), func, flag); if (ret != 0 || CompareMat(b, c, epsilon) != 0) { fprintf(stderr, "test_layer_cpu failed\n"); return -1; } } // cpu shape hint { ncnn::Mat c; int ret = test_layer_cpu(typeindex, pd, weights, _opt, a, c, b, func, flag); if (ret != 0 || CompareMat(b, c, epsilon) != 0) { fprintf(stderr, "test_layer_cpu failed with shape hint\n"); return -1; } } #if NCNN_VULKAN // gpu if (!(flag & TEST_LAYER_DISABLE_GPU_TESTING)) { ncnn::Mat d; int ret = test_layer_gpu(typeindex, pd, weights, _opt, a, d, ncnn::Mat(), func, flag); if (ret != 233 && (ret != 0 || CompareMat(b, d, epsilon) != 0)) { fprintf(stderr, "test_layer_gpu failed\n"); return -1; } } // gpu shape hint if (!(flag & TEST_LAYER_DISABLE_GPU_TESTING)) { ncnn::Mat d; int ret = test_layer_gpu(typeindex, pd, weights, _opt, a, d, b, func, flag); if (ret != 233 && (ret != 0 || CompareMat(b, d, epsilon) != 0)) { fprintf(stderr, "test_layer_gpu failed with shape hint\n"); return -1; } } #endif // NCNN_VULKAN return 0; } template int test_layer(const char* layer_type, const ncnn::ParamDict& pd, const std::vector& weights, const std::vector& a, int top_blob_count = 1, float epsilon = 0.001, void (*func)(T*) = 0, int flag = 0) { ncnn::Option opts[7]; opts[0].use_packing_layout = false; opts[0].use_fp16_packed = false; opts[0].use_fp16_storage = false; opts[0].use_fp16_arithmetic = false; opts[0].use_bf16_storage = false; opts[0].use_shader_pack8 = false; opts[0].use_image_storage = false; opts[1].use_packing_layout = false; opts[1].use_fp16_packed = true; opts[1].use_fp16_storage = true; opts[1].use_fp16_arithmetic = true; opts[1].use_bf16_storage = true; opts[1].use_shader_pack8 = false; opts[1].use_image_storage = false; opts[2].use_packing_layout = true; opts[2].use_fp16_packed = true; opts[2].use_fp16_storage = false; opts[2].use_fp16_arithmetic = false; opts[2].use_bf16_storage = false; opts[2].use_shader_pack8 = true; opts[2].use_image_storage = false; opts[3].use_packing_layout = true; opts[3].use_fp16_packed = true; opts[3].use_fp16_storage = true; opts[3].use_fp16_arithmetic = false; opts[3].use_bf16_storage = true; opts[3].use_shader_pack8 = true; opts[3].use_image_storage = true; opts[4].use_packing_layout = true; opts[4].use_fp16_packed = true; opts[4].use_fp16_storage = true; opts[4].use_fp16_arithmetic = true; opts[4].use_bf16_storage = true; opts[4].use_shader_pack8 = true; opts[4].use_image_storage = true; opts[5].use_packing_layout = true; opts[5].use_fp16_packed = false; opts[5].use_fp16_storage = false; opts[5].use_fp16_arithmetic = false; opts[5].use_bf16_storage = false; opts[5].use_shader_pack8 = false; opts[5].use_image_storage = false; opts[5].use_sgemm_convolution = false; opts[5].use_winograd_convolution = false; opts[6].use_packing_layout = true; opts[6].use_fp16_packed = true; opts[6].use_fp16_storage = true; opts[6].use_fp16_arithmetic = true; opts[6].use_bf16_storage = true; opts[6].use_shader_pack8 = true; opts[6].use_image_storage = true; opts[6].use_sgemm_convolution = false; opts[6].use_winograd_convolution = false; for (int i = 0; i < 7; i++) { opts[i].num_threads = 1; } for (int i = 0; i < 7; i++) { const ncnn::Option& opt = opts[i]; // fp16 representation std::vector a_fp16; if (opt.use_bf16_storage && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { a_fp16.resize(a.size()); for (size_t j = 0; j < a.size(); j++) { ncnn::Mat tmp; ncnn::cast_float32_to_bfloat16(a[j], tmp, opt); ncnn::cast_bfloat16_to_float32(tmp, a_fp16[j], opt); } } else if ((opt.use_fp16_packed || opt.use_fp16_storage) && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { a_fp16.resize(a.size()); for (size_t j = 0; j < a.size(); j++) { ncnn::Mat tmp; ncnn::cast_float32_to_float16(a[j], tmp, opt); ncnn::cast_float16_to_float32(tmp, a_fp16[j], opt); } } else { a_fp16 = a; } std::vector weights_fp16; float epsilon_fp16; if (opt.use_bf16_storage) { weights_fp16.resize(weights.size()); for (size_t j = 0; j < weights.size(); j++) { ncnn::Mat tmp; ncnn::cast_float32_to_bfloat16(weights[j], tmp, opt); ncnn::cast_bfloat16_to_float32(tmp, weights_fp16[j], opt); } epsilon_fp16 = epsilon * 100; // 0.1 } else if (opt.use_fp16_packed || opt.use_fp16_storage) { weights_fp16.resize(weights.size()); for (size_t j = 0; j < weights.size(); j++) { ncnn::Mat tmp; ncnn::cast_float32_to_float16(weights[j], tmp, opt); ncnn::cast_float16_to_float32(tmp, weights_fp16[j], opt); } epsilon_fp16 = epsilon * 100; // 0.1 } else { weights_fp16 = weights; epsilon_fp16 = epsilon; } if (opt.use_fp16_arithmetic) { epsilon_fp16 = epsilon * 1000; // 1.0 } std::vector top_shapes; int ret = test_layer(ncnn::layer_to_index(layer_type), pd, weights_fp16, opt, a_fp16, top_blob_count, top_shapes, epsilon_fp16, func, flag); if (ret != 0) { fprintf(stderr, "test_layer %s failed use_packing_layout=%d use_fp16_packed=%d use_fp16_storage=%d use_fp16_arithmetic=%d use_shader_pack8=%d use_bf16_storage=%d use_image_storage=%d use_sgemm_convolution=%d use_winograd_convolution=%d\n", layer_type, opt.use_packing_layout, opt.use_fp16_packed, opt.use_fp16_storage, opt.use_fp16_arithmetic, opt.use_shader_pack8, opt.use_bf16_storage, opt.use_image_storage, opt.use_sgemm_convolution, opt.use_winograd_convolution); return ret; } } return 0; } template int test_layer(const char* layer_type, const ncnn::ParamDict& pd, const std::vector& weights, const ncnn::Mat& a, float epsilon = 0.001, void (*func)(T*) = 0, int flag = 0) { ncnn::Option opts[7]; opts[0].use_packing_layout = false; opts[0].use_fp16_packed = false; opts[0].use_fp16_storage = false; opts[0].use_fp16_arithmetic = false; opts[0].use_bf16_storage = false; opts[0].use_shader_pack8 = false; opts[0].use_image_storage = false; opts[1].use_packing_layout = false; opts[1].use_fp16_packed = true; opts[1].use_fp16_storage = true; opts[1].use_fp16_arithmetic = true; opts[1].use_bf16_storage = true; opts[1].use_shader_pack8 = false; opts[1].use_image_storage = false; opts[2].use_packing_layout = true; opts[2].use_fp16_packed = true; opts[2].use_fp16_storage = false; opts[2].use_fp16_arithmetic = false; opts[2].use_bf16_storage = false; opts[2].use_shader_pack8 = true; opts[2].use_image_storage = false; opts[3].use_packing_layout = true; opts[3].use_fp16_packed = true; opts[3].use_fp16_storage = true; opts[3].use_fp16_arithmetic = false; opts[3].use_bf16_storage = true; opts[3].use_shader_pack8 = true; opts[3].use_image_storage = true; opts[4].use_packing_layout = true; opts[4].use_fp16_packed = true; opts[4].use_fp16_storage = true; opts[4].use_fp16_arithmetic = true; opts[4].use_bf16_storage = true; opts[4].use_shader_pack8 = true; opts[4].use_image_storage = true; opts[5].use_packing_layout = true; opts[5].use_fp16_packed = false; opts[5].use_fp16_storage = false; opts[5].use_fp16_arithmetic = false; opts[5].use_bf16_storage = false; opts[5].use_shader_pack8 = false; opts[5].use_image_storage = false; opts[5].use_sgemm_convolution = false; opts[5].use_winograd_convolution = false; opts[6].use_packing_layout = true; opts[6].use_fp16_packed = true; opts[6].use_fp16_storage = true; opts[6].use_fp16_arithmetic = true; opts[6].use_bf16_storage = true; opts[6].use_shader_pack8 = true; opts[6].use_image_storage = true; opts[6].use_sgemm_convolution = false; opts[6].use_winograd_convolution = false; for (int i = 0; i < 7; i++) { opts[i].num_threads = 1; } for (int i = 0; i < 7; i++) { const ncnn::Option& opt = opts[i]; // fp16 representation ncnn::Mat a_fp16; if (opt.use_bf16_storage && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { ncnn::Mat tmp; ncnn::cast_float32_to_bfloat16(a, tmp, opt); ncnn::cast_bfloat16_to_float32(tmp, a_fp16, opt); } else if ((opt.use_fp16_packed || opt.use_fp16_storage) && !(flag & TEST_LAYER_DISABLE_AUTO_INPUT_CASTING)) { ncnn::Mat tmp; ncnn::cast_float32_to_float16(a, tmp, opt); ncnn::cast_float16_to_float32(tmp, a_fp16, opt); } else { a_fp16 = a; } std::vector weights_fp16; float epsilon_fp16; if (opt.use_bf16_storage) { weights_fp16.resize(weights.size()); for (size_t j = 0; j < weights.size(); j++) { ncnn::Mat tmp; ncnn::cast_float32_to_bfloat16(weights[j], tmp, opt); ncnn::cast_bfloat16_to_float32(tmp, weights_fp16[j], opt); } epsilon_fp16 = epsilon * 100; // 0.1 } else if (opt.use_fp16_packed || opt.use_fp16_storage) { weights_fp16.resize(weights.size()); for (size_t j = 0; j < weights.size(); j++) { ncnn::Mat tmp; ncnn::cast_float32_to_float16(weights[j], tmp, opt); ncnn::cast_float16_to_float32(tmp, weights_fp16[j], opt); } epsilon_fp16 = epsilon * 100; // 0.1 } else { weights_fp16 = weights; epsilon_fp16 = epsilon; } if (opt.use_fp16_arithmetic) { epsilon_fp16 = epsilon * 1000; // 1.0 } ncnn::Mat top_shape; int ret = test_layer(ncnn::layer_to_index(layer_type), pd, weights_fp16, opt, a_fp16, top_shape, epsilon_fp16, func, flag); if (ret != 0) { fprintf(stderr, "test_layer %s failed use_packing_layout=%d use_fp16_packed=%d use_fp16_storage=%d use_fp16_arithmetic=%d use_shader_pack8=%d use_bf16_storage=%d use_image_storage=%d use_sgemm_convolution=%d use_winograd_convolution=%d\n", layer_type, opt.use_packing_layout, opt.use_fp16_packed, opt.use_fp16_storage, opt.use_fp16_arithmetic, opt.use_shader_pack8, opt.use_bf16_storage, opt.use_image_storage, opt.use_sgemm_convolution, opt.use_winograd_convolution); return ret; } } return 0; } #endif // TESTUTIL_H