/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ // This is the operation definition file for TensorFlow. // // This file contains TensorFlow ops whose definitions are amended to fix // issues or provide more information. In this file you have full control // of the op definition; all changes will be retained with subsequent // refreshes. // // This file includes another file, `tf_generated_ops.td`, which contains // all ops whose definitions are generated from TensorFlow codebase. // Changes made there are not respected. #ifndef TF_OPS #define TF_OPS include "tf_generated_ops.td" include "tf_op_base.td" include "mlir/Interfaces/CallInterfaces.td" include "mlir/Interfaces/ControlFlowInterfaces.td" include "mlir/Interfaces/LoopLikeInterface.td" include "mlir/Interfaces/SideEffectInterfaces.td" include "mlir/IR/OpBase.td" include "mlir/IR/SymbolInterfaces.td" class TF_TensorListInitOp : TF_Op { let results = (outs TF_VariantTensor:$handle ); TF_DerivedOperandTypeAttr shape_type = TF_DerivedOperandTypeAttr<0>; let verifier = [{ // This is required to populate derived attributes during export in a // meaningful way. Else during export to GraphDef element_type() query // will result in out of bounds access/assert. if (handle_dtype().getSubtypes().size() != 1) { return emitOpError( "must have exactly one subtype in the result variant type"); } return Verify(*this); }]; DerivedTypeAttr element_dtype = DerivedTypeAttr< "return getElementTypeOrSelf(element_type());">; let extraClassDeclaration = [{ // Returns type of the TensorList element produced by this op. TensorType element_type() { return handle_dtype().getSubtypes()[0]; } // Returns data type of the result handle. Returned type contains type of // the TensorList element as a subtype. VariantType handle_dtype() { return getElementTypeOrSelf(handle().getType()).cast(); } }]; } def TF_CaseOp : TF_Op<"Case", []> { let summary = [{ An n-way switch statement which calls a single branch function. }]; let description = [{ An n-way switch statement, implementing the following: ``` switch (branch_index) { case 0: output = branches[0](input); break; case 1: output = branches[1](input); break; ... case [[nbranches-1]]: default: output = branches[nbranches-1](input); break; } ``` }]; let arguments = (ins I32Tensor:$branch_index, Variadic:$input, Confined]>:$branches, // Used to map StatelessCase and Case op defined in TensorFlow to a common // op. BoolAttr:$is_stateless ); let results = (outs Variadic:$output ); TF_DerivedOperandTypeListAttr Tin = TF_DerivedOperandTypeListAttr<1>; TF_DerivedResultTypeListAttr Tout = TF_DerivedResultTypeListAttr<0>; TF_DerivedResultShapeListAttr output_shapes = TF_DerivedResultShapeListAttr<0>; let verifier = [{ return Verify(*this); }]; let extraClassDeclaration = [{ int num_branches() { return branches().size(); } // Gets function corresponding branch # `index`. FuncOp branch_function(int index) { auto flat_sym_ref = branches()[index].cast(); return SymbolTable::lookupNearestSymbolFrom(*this, flat_sym_ref); } // Gets all branch functions. void get_branch_functions(SmallVectorImpl &functions) { functions.reserve(num_branches()); for (int idx : llvm::seq(0, num_branches())) functions.push_back(branch_function(idx)); } }]; } def TF_CaseRegionOp : TF_Op<"CaseRegion", [SingleBlockImplicitTerminator<"YieldOp">, NoRegionArguments]> { let summary = [{ An n-way switch statement which calls a single branch function. }]; let description = [{ An n-way switch statement, implementing the following: ``` switch (branch_index) { case 0: output = branches[0](input); break; case 1: output = branches[1](input); break; ... case [[nbranches-1]]: default: output = branches[nbranches-1](input); break; } ``` }]; let arguments = (ins I32Tensor:$branch_index, // Used to map StatelessCase and Case op defined in TensorFlow to a common // op. BoolAttr:$is_stateless ); let results = (outs Variadic:$output ); let regions = (region VariadicRegion>:$branches); let verifier = [{ return Verify(*this); }]; } // In MLIR, the TensorFlow tensor value is represented as an ElementsAttr, with // its type encoding the tensor's shape and data type. def TF_ConstOp : TF_Op<"Const", [ConstantLike, NoSideEffect]> { let summary = "Constant tensor op"; let arguments = (ins ElementsAttr:$value ); let results = (outs TF_Tensor:$output ); TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>; let builders = [ OpBuilder<(ins "Attribute":$value)>, OpBuilder<(ins "Type":$type, "Attribute":$value)>, ]; } def TF_CollectivePermuteOp : TF_Op<"CollectivePermute", []> { let summary = "An Op to permute tensors across replicated TPU instances."; let description = [{ Each instance supplies its own input. For example, suppose there are 4 TPU instances: `[A, B, C, D]`. Passing source_target_pairs=`[[0,1],[1,2],[2,3],[3,0]]` gets the outputs: `[D, A, B, C]`. }]; let arguments = (ins TensorOf<[TF_Bfloat16, TF_Float16, TF_Float32, TF_Float64, TF_Int16, TF_Int32, TF_Int64, TF_Int8, TF_Complex128, TF_Complex64, TF_Qint32, TF_Qint8, TF_Quint8, TF_Uint16, TF_Uint32, TF_Uint64, TF_Uint8]>:$input, I32Tensor:$source_target_pairs ); let results = (outs TensorOf<[TF_Bfloat16, TF_Float16, TF_Float32, TF_Float64, TF_Int16, TF_Int32, TF_Int64, TF_Int8, TF_Complex128, TF_Complex64, TF_Qint32, TF_Qint8, TF_Quint8, TF_Uint16, TF_Uint32, TF_Uint64, TF_Uint8]>:$output ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_XlaAllReduceOp : TF_Op<"XlaAllReduce", [NoSideEffect, TF_AllTypesMatch<["input", "output"]>]> { let summary = "An Op to reduce inputs across replicated TPU instances."; let arguments = (ins TensorOf<[TF_Bfloat16, TF_Float16, TF_Float32, TF_Int32, TF_Uint32]>:$input, TF_Int32Tensor:$group_assignment, TF_AnyStrAttrOf<["Min", "Max", "Mul", "Add", "Mean"]>:$reduce_op ); let results = (outs TensorOf<[TF_Bfloat16, TF_Float16, TF_Float32, TF_Int32, TF_Uint32]>:$output ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_EmptyTensorListOp : TF_TensorListInitOp<"EmptyTensorList"> { let summary = "Creates and returns an empty tensor list."; let description = [{ All list elements must be tensors of dtype element_dtype and shape compatible with element_shape. handle: an empty tensor list. element_dtype: the type of elements in the list. element_shape: a shape compatible with that of elements in the list. }]; let arguments = (ins TF_I32OrI64Tensor:$element_shape, TF_Int32Tensor:$max_num_elements ); } // TODO(fengliuai): The tf.Identity is side-effect free and it doesn't change // the status of the system during the execution. However it shouldn't be folded // in general if it used to serve for caching and some other invariant checks, // so we removed the side-effect free property in the op definition. This is a // hack, and we should fix it if we have a better way to model it. def TF_IdentityOp : TF_Op<"Identity", [TF_OperandsSameAsResultsTypeOrRef]> { let summary = "Identity op"; let description = [{ Returns a tensor with the same shape and contents as input. }]; let arguments = (ins TF_Tensor:$input ); let results = (outs TF_Tensor:$output ); TF_DerivedResultTypeAttr T = TF_DerivedResultTypeAttr<0>; } def TF_IfOp : TF_Op<"If", []> { let summary = "output = cond ? then_branch(input) : else_branch(input)"; let description = [{ output = cond ? then_branch(input) : else_branch(input) cond: A Tensor. If the tensor is a scalar of non-boolean type, the scalar is converted to a boolean according to the following rule: if the scalar is a numerical value, non-zero means True and zero means False; if the scalar is a string, non-empty means True and empty means False. If the tensor is not a scalar, being empty means False and being non-empty means True. input: A list of input tensors. then_branch: A function that takes 'inputs' and returns a list of tensors, whose types are the same as what else_branch returns. else_branch: A function that takes 'inputs' and returns a list of tensors. whose types are the same as what then_branch returns. }]; let arguments = (ins TF_Tensor:$cond, Variadic:$input, FlatSymbolRefAttr:$then_branch, FlatSymbolRefAttr:$else_branch, // Used to map StatelessIf and If op defined in TensorFlow to a common op. BoolAttr:$is_stateless ); let results = (outs Variadic:$output ); TF_DerivedOperandTypeAttr Tcond = TF_DerivedOperandTypeAttr<0>; TF_DerivedOperandTypeListAttr Tin = TF_DerivedOperandTypeListAttr<1>; TF_DerivedResultTypeListAttr Tout = TF_DerivedResultTypeListAttr<0>; TF_DerivedResultShapeListAttr output_shapes = TF_DerivedResultShapeListAttr<0>; let extraClassDeclaration = [{ // Get the then branch function. FuncOp then_function() { return SymbolTable::lookupNearestSymbolFrom(*this, then_branch()); } // Get the else branch function. FuncOp else_function() { return SymbolTable::lookupNearestSymbolFrom(*this, else_branch()); } }]; } def TF_YieldOp : TF_Op<"Yield", [NoSideEffect, ReturnLike, Terminator, ParentOneOf<["CaseRegionOp", "IfRegionOp", "WhileRegionOp"]>]> { let summary = "Yield operation"; let description = [{ The "yield" operation represents a return operation within the conditional and body of structured control flow (e.g., if and while). The operation takes a variable number of operands and produces no results. The number and types of inputs must match the signature of the operation that contains the region. }]; let arguments = (ins Variadic:$operands); } def TF_IfRegionOp : TF_Op<"IfRegion", [SingleBlockImplicitTerminator<"YieldOp">, NoRegionArguments]> { let summary = "output = cond ? then_branch output : else_branch output"; let description = [{ "output = cond ? then_branch output : else_branch output" cond: A Tensor. If the tensor is a scalar of non-boolean type, the scalar is converted to a boolean according to the following rule: if the scalar is a numerical value, non-zero means True and zero means False; if the scalar is a string, non-empty means True and empty means False. If the tensor is not a scalar, being empty means False and being non-empty means True. then_branch: A region that computes the outputs of the op if cond = true. It returns a list of tensors using tf.yield (as the terminator). The types of these returned tensors is same as that of the else_branch else_branch: A region that computes the outputs of the op if cond = false. It returns a list of tensors using tf.yield (as the terminator). The types of these returned tensors is same as that of the then_branch }]; let arguments = (ins 0DTensorOf<[I1]>:$cond, // Used to map StatelessIf and If op defined in TensorFlow to a common op. BoolAttr:$is_stateless, // Used to maintain function name when round-tripping // between functional and regional control flow. This can be removed if // the runtime does not require globally unique then/else branch function names. OptionalAttr:$_then_func_name, OptionalAttr:$_else_func_name ); let results = (outs Variadic:$output ); let regions = (region SizedRegion<1>:$then_branch, SizedRegion<1>:$else_branch); let verifier = [{ return Verify(*this); }]; let builders = [ OpBuilder<(ins "TypeRange":$resultTypes, "ValueRange":$operands, "llvm::ArrayRef<::mlir::NamedAttribute>":$attributes, "unsigned":$numRegions), [{ assert(numRegions == 2u && "mismatched number of regions"); build($_builder, $_state, resultTypes, operands, attributes); }]>]; } def TF_LegacyCallOp : TF_Op<"LegacyCall", [CallOpInterface, NoSideEffect]> { let summary = "returns `f(inputs)`, where `f` is a function."; let description = [{ The LegacyCall operation represents a direct call to a function that is within the same symbol scope as the call and is mapped to a GraphDef node with the function name as the op name. Unlike a PartitionedCall which represents asynchronously executing a function across multiple devices, a LegacyCall ignores specification for ops in the attached function and instead executes it on the device assigned to this op. }]; let arguments = (ins Variadic:$args, FlatSymbolRefAttr:$f, DefaultValuedAttr:$_disable_call_shape_inference ); let results = (outs Variadic:$output ); let extraClassDeclaration = [{ // Gets the argument operands to the called function. operand_range getArgOperands() { return args(); } // Returns the callee of this operation. CallInterfaceCallable getCallableForCallee() { return fAttr(); } // returns the callee of this operation. FuncOp func() { return SymbolTable::lookupNearestSymbolFrom(*this, f()); } }]; } def TF_ParseExampleOp : TF_Op<"ParseExample", [NoSideEffect, AttrSizedResultSegments, AttrSizedOperandSegments]> { let summary = "Transforms a vector of tf.Example protos (as strings) into typed tensors."; let arguments = (ins TF_StrTensor:$serialized, TF_StrTensor:$names, Variadic:$sparse_keys, Variadic:$dense_keys, Variadic>:$dense_defaults, TF_ShapeAttrArray:$dense_shapes, I32ElementsAttr:$result_segment_sizes, I32ElementsAttr:$operand_segment_sizes ); let results = (outs Variadic:$sparse_indices, // len(sparse_types) Variadic>:$sparse_values, // len(sparse_types) Variadic:$sparse_shapes, // len(sparse_types) Variadic>:$dense_values // len(Tdense) ); TF_DerivedOperandSizeAttr Nsparse = TF_DerivedOperandSizeAttr<2>; TF_DerivedOperandSizeAttr Ndense = TF_DerivedOperandSizeAttr<3>; TF_DerivedOperandTypeListAttr Tdense = TF_DerivedOperandTypeListAttr<4>; TF_DerivedResultTypeListAttr sparse_types = TF_DerivedResultTypeListAttr<1>; let verifier = ?; } def TF_ParseExampleV2Op : TF_Op<"ParseExampleV2", [NoSideEffect, AttrSizedResultSegments]> { let summary = "Transforms a vector of tf.Example protos (as strings) into typed tensors."; let arguments = (ins TF_StrTensor:$serialized, TF_StrTensor:$names, TF_StrTensor:$sparse_keys, TF_StrTensor:$dense_keys, TF_StrTensor:$ragged_keys, Variadic>:$dense_defaults, Confined]>:$num_sparse, TF_ShapeAttrArray:$dense_shapes, I32ElementsAttr:$result_segment_sizes ); let results = (outs Variadic:$sparse_indices, // len(sparse_types) Variadic>:$sparse_values, // len(sparse_types) Variadic:$sparse_shapes, // len(sparse_types) Variadic>:$dense_values, // len(Tdense) Variadic>:$ragged_values, // len(ragged_value_types) // = len(ragged_split_types) Variadic>:$ragged_row_splits // len(ragged_split_types) // = len(ragged_value_types) ); // The Verify(ParseExampleV2Op) function validates that the lengths and types // of these attrs are compatible. TF_DerivedOperandTypeListAttr Tdense = TF_DerivedOperandTypeListAttr<5>; TF_DerivedResultTypeListAttr sparse_types = TF_DerivedResultTypeListAttr<1>; TF_DerivedResultTypeListAttr ragged_value_types = TF_DerivedResultTypeListAttr<4>; TF_DerivedResultTypeListAttr ragged_split_types = TF_DerivedResultTypeListAttr<5>; let verifier = [{ return Verify(*this); }]; } def TF_PartitionedCallOp : TF_Op<"PartitionedCall", [CallOpInterface, NoSideEffect]> { let summary = "returns `f(inputs)`, where `f`'s body is placed and partitioned."; let description = [{ Asynchronously executes a function, potentially across multiple devices but within a single process. The kernel places and partitions a given function's underlying graph, and executes each of the partitioned subgraphs as a function. }]; let arguments = (ins Variadic:$args, SymbolRefAttr:$f, StrAttr:$config, StrAttr:$config_proto, StrAttr:$executor_type ); let results = (outs Variadic:$output ); TF_DerivedOperandTypeListAttr Tin = TF_DerivedOperandTypeListAttr<0>; TF_DerivedResultTypeListAttr Tout = TF_DerivedResultTypeListAttr<0>; let extraClassDeclaration = [{ // Gets the argument operands to the called function. operand_range getArgOperands() { return args(); } // Returns the callee of this operation. CallInterfaceCallable getCallableForCallee() { return fAttr(); } // returns the callee of this operation. FuncOp func() { return SymbolTable::lookupNearestSymbolFrom(*this, f()); } }]; let verifier = [{ return VerifyPartitionedCall(*this); }]; } def TF_PlaceholderOp : TF_Op<"Placeholder", [NoSideEffect]> { let summary = "Placeholder op"; let description = [{ Inserts a placeholder for a tensor that will be always fed. }]; let arguments = (ins ); let results = (outs TF_Tensor:$output ); TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>; } def TF_PlaceholderWithDefaultOp : TF_Op<"PlaceholderWithDefault", [NoSideEffect]> { let summary = "Placeholder op"; let description = [{ A placeholder op that passes through input when its output is not fed. }]; let arguments = (ins TF_Tensor:$input ); let results = (outs TF_Tensor:$output ); TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>; DerivedAttr shape = TF_DerivedResultShapeAttr; } def TF_StatefulPartitionedCallOp : TF_Op<"StatefulPartitionedCall", [CallOpInterface]> { let summary = "returns `f(inputs)`, where `f`'s body is placed and partitioned."; let description = [{ Asynchronously executes a function, potentially across multiple devices but within a single process. The kernel places and partitions a given function's underlying graph, and executes each of the partitioned subgraphs as a function. }]; let arguments = (ins Variadic:$args, FlatSymbolRefAttr:$f, StrAttr:$config, StrAttr:$config_proto, StrAttr:$executor_type ); let results = (outs Variadic:$output ); TF_DerivedOperandTypeListAttr Tin = TF_DerivedOperandTypeListAttr<0>; TF_DerivedResultTypeListAttr Tout = TF_DerivedResultTypeListAttr<0>; let extraClassDeclaration = [{ // Gets the argument operands to the called function. operand_range getArgOperands() { return args(); } // Returns the callee of this operation. CallInterfaceCallable getCallableForCallee() { return fAttr(); } // returns the callee of this operation. FuncOp func() { return SymbolTable::lookupNearestSymbolFrom(*this, f()); } }]; let verifier = [{ return VerifyPartitionedCall(*this); }]; } def TF_WhileOp : TF_Op<"While", []> { let summary = [{ output = input; While (Cond(output)) { output = Body(output) } }]; let description = [{ output = input; While (Cond(output)) { output = Body(output) } input: A list of input tensors whose types are T. output: A list of output tensors whose types are T. cond: A function that takes 'input' and returns a tensor. If the tensor is a scalar of non-boolean, the scalar is converted to a boolean according to the following rule: if the scalar is a numerical value, non-zero means True and zero means False; if the scalar is a string, non-empty means True and empty means False. If the tensor is not a scalar, non-emptiness means True and False otherwise. body: A function that takes a list of tensors and returns another list of tensors. Both lists have the same types as specified by T. }]; let arguments = (ins Variadic:$input, FlatSymbolRefAttr:$cond, FlatSymbolRefAttr:$body, DefaultValuedAttr:$parallel_iterations, // Used to map StatelessWhile and While op defined in TensorFlow to a common // op. BoolAttr:$is_stateless, // In TensorFlow, While has a special behavior where if `output_shapes` // attribute is not empty, those shapes are used in its shape function // as result shapes instead of propagating operand shapes as result shapes. // This allows for different result shapes from operand shapes. While these // shapes are imported and set as a part of the result type, there is no // indicator differentiating between having no output shapes compared to // having all unranked shapes. Thus this attribute is set to determine // which shape function behavior to use for this op, specifically // propagating operand shapes as result shapes when this attribute is not // set, or preserving result shapes as is when this attribute is set. UnitAttr:$shape_invariant ); let results = (outs Variadic:$output ); TF_DerivedOperandTypeListAttr T = TF_DerivedOperandTypeListAttr<0>; TF_DerivedResultShapeListAttr output_shapes = TF_DerivedResultShapeListAttr<0>; let extraClassDeclaration = [{ // Get the condition function. FuncOp cond_function() { return SymbolTable::lookupNearestSymbolFrom(*this, cond()); } // Get the body function. FuncOp body_function() { return SymbolTable::lookupNearestSymbolFrom(*this, body()); } }]; } def TF_WhileRegionOp : TF_Op<"WhileRegion", [DeclareOpInterfaceMethods, SingleBlockImplicitTerminator<"YieldOp">]> { let summary = "while operation"; let description = [{ The tf.WhileRegion op represents a while loop using 2 regions and a set of iteration variables. The iteration variables maintained by this Op have the same types as the inputs. The Op executes a while loop described by the following pseudo code: ``` func WhileRegionOp(inputs) { iteration_vars = inputs; while (cond(iteration_vars)) { iteration_vars = body(iteration_vars); } return iteration_vars; } ``` `cond` is the condition region and `body` is the body region. Both these regions accept the current value of the iteration variables as inputs. The condition region returns a tensor which, if false, will exit the loop. The body region computes new values of the iteration variables. The iteration variables are initialized to the Op input, and the results of the tf.WhileRegion op are the final values of the iteration variables. This implies that the operand and result types for tf.WhileRegion should be the same. Note that the condition and body regions can implicitly capture loop invariant values directly. In canonical form, iteration variables that pass through the loop body unmodified are converted to implicitly captured references to their values outside the loop. }]; let arguments = (ins Variadic:$input, DefaultValuedAttr:$parallel_iterations, // Used to map StatelessWhile and While op defined in TensorFlow to a common // op. BoolAttr:$is_stateless, // In TensorFlow, While has a special behavior where if `output_shapes` // attribute is not empty, those shapes are used in its shape function // as result shapes instead of propagating operand shapes as result shapes. // This allows for different result shapes from operand shapes. While these // shapes are imported and set as a part of the result type, there is no // indicator differentiating between having no output shapes compared to // having all unranked shapes. Thus this attribute is set to determine // which shape function behavior to use for this op, specifically // propagating operand shapes as result shapes when this attribute is not // set, or preserving result shapes as is when this attribute is set. UnitAttr:$shape_invariant ); let results = (outs Variadic:$output); let regions = (region SizedRegion<1>:$cond, SizedRegion<1>:$body); let verifier = [{ return Verify(*this); }]; } def TF_TensorListReserveOp : TF_TensorListInitOp<"TensorListReserve"> { let summary = "List of the given size with empty elements."; let description = [{ element_shape: the shape of the future elements of the list num_elements: the number of elements to reserve handle: the output list element_dtype: the desired type of elements in the list. }]; let arguments = (ins TF_I32OrI64Tensor:$element_shape, TF_Int32Tensor:$num_elements ); } // This operation when auto-generated is marked as NoSideEffect because it isn't // stateful in TensorFlow. However it is kept alive through control dependency, // and does not have any output. When placed in an island it wouldn't be kept // alive in any way and the canonicalizer would just always fold it away. def TF_TPUReplicateMetadataOp : TF_Op<"TPUReplicateMetadata", []> { let summary = [{ Metadata indicating how the TPU computation should be replicated. }]; let description = [{ This operation holds the metadata common to operations of a `tpu.replicate()` computation subgraph. }]; let arguments = (ins Confined]>:$num_replicas, DefaultValuedAttr:$num_cores_per_replica, StrAttr:$topology, DefaultValuedAttr:$use_tpu, DefaultValuedAttr:$device_assignment, DefaultValuedAttr:$computation_shape, DefaultValuedAttr:$host_compute_core, DefaultValuedAttr:$padding_map, DefaultValuedAttr:$step_marker_location, DefaultValuedAttr:$allow_soft_placement, DefaultValuedAttr:$use_spmd_for_xla_partitioning ); let results = (outs); } def TF_VarHandleOp : TF_Op<"VarHandleOp", []> { let summary = "Creates a handle to a Variable resource from its name."; let description = [{ container: the container this variable is placed in. shared_name: the name by which this variable is referred to. dtype and shape: attributes representing the data type and shape held in the variable. Example: resource_variable_ops.var_handle_op( dtype=dtypes.int32, shape=[8, 16], container="foo", shared_name="bar") returns a handle for a variable with name "bar" in container "foo", and the variable holds a tensor of shape [8, 16] and dtype int32. }]; let arguments = (ins DefaultValuedAttr:$container, DefaultValuedAttr:$shared_name ); let results = (outs Res:$resource ); } def TF_EnqueueTPUEmbeddingBatchOp : TF_Op<"EnqueueTPUEmbeddingBatch", [TF_TPUEmbeddingSideEffect]> { let summary = [{ An op that enqueues a list of input batch tensors to TPUEmbedding. }]; let arguments = (ins Variadic:$batch, TF_StrTensor:$mode_override, DefaultValuedAttr:$device_ordinal, DefaultValuedAttr:$combiners ); let results = (outs); TF_DerivedOperandSizeAttr N = TF_DerivedOperandSizeAttr<0>; } // Multiple variadic operands with different sizes are not supported by the // dialect generator, so we manually added the op. def TF_SendTPUEmbeddingGradientsOp : TF_Op<"SendTPUEmbeddingGradients", [AttrSizedOperandSegments, TF_TPUEmbeddingSideEffect]> { let summary = "Performs gradient updates of embedding tables."; let description = [{ inputs: A TensorList of gradients with which to update embedding tables. This argument has the same length and shapes as the return value of RecvTPUEmbeddingActivations, but contains gradients of the model's loss with respect to the embedding activations. The embedding tables are updated from these gradients via the optimizer specified in the TPU embedding configuration given to tpu.initialize_system. learning_rates: A TensorList of float32 scalars, one for each dynamic learning rate tag: see the comments in //third_party/tensorflow/core/protobuf/tpu/optimization_parameters.proto. Multiple tables can share the same dynamic learning rate tag as specified in the configuration. If the learning rates for all tables are constant, this list should be empty. config: Serialized TPUEmbeddingConfiguration proto. }]; let arguments = (ins Variadic:$inputs, Variadic:$learning_rates, StrAttr:$config ); TF_DerivedOperandSizeAttr N = TF_DerivedOperandSizeAttr<0>; TF_DerivedOperandSizeAttr NN = TF_DerivedOperandSizeAttr<1>; } // Multiple variadic operands with different sizes are not supported by the // dialect generator, so we manually added the op. def TF__SendTPUEmbeddingGradientsOp : TF_Op<"_SendTPUEmbeddingGradients", [AttrSizedOperandSegments, TF_TPUEmbeddingSideEffect]> { let summary = "Performs gradient updates of embedding tables."; let description = [{ The gradients argument is a TensorList having the same length and shapes as the return value of _RecvTPUEmbeddingActivations, but contains gradients of the model's loss with respect to the embedding activations. The embedding tables are updated from these gradients via the optimizer specified in the TPUEmbeddingConfiguration proto given to tpu.initialize_system. gradients: A TensorList of gradients with which to update embedding tables. learning_rates: A TensorList of learning rates used for updating the embedding tables via the optimizer. The length of the TensorList must be equal to the number of dynamic learning rate tags specified in the TPUEmbeddingConfiguration proto. deduplication_data: A Tensor with type=DT_VARIANT containing the deduplication data. The tensor is an XLA nested tuple containing N elements. Each element of the nested tuple is a tuple of rank 1 tensors. Each tensor either contains indices (DT_INT32) for embedding lookup or weights (DT_FLOAT) to apply to the output of the embedding lookup operation. config: Serialized TPUEmbeddingConfiguration proto. }]; let arguments = (ins Variadic:$gradients, Variadic:$learning_rates, TF_VariantTensor:$deduplication_data, StrAttr:$config ); TF_DerivedOperandSizeAttr NumTables = TF_DerivedOperandSizeAttr<0>; TF_DerivedOperandSizeAttr NumLearningRateTags = TF_DerivedOperandSizeAttr<1>; } // Updated the op description text from the auto-generated op definition. def TF__RecvTPUEmbeddingDeduplicationDataOp : TF_Op<"_RecvTPUEmbeddingDeduplicationData", []> { let summary = [{ Receives deduplication data (indices and weights). }]; let description = [{ The deduplication data is a Tensor with type=DT_VARIANT. The tensor itself is an XLA nested tuple containing N elements. Each element of the nested tuple is a tuple of rank 1 tensors. Each tensor either contains indices (DT_INT32) for embedding lookup or weights (DT_FLOAT) to apply to the output of the embedding lookup operation. }]; let arguments = (ins StrAttr:$config ); let results = (outs TF_VariantTensor:$output ); } def TF_XlaShardingOp : TF_Op<"XlaSharding", [NoSideEffect]> { let summary = [{ An op which shards the input based on the given sharding attribute. }]; let arguments = (ins TF_Tensor:$input, DefaultValuedAttr:$sharding, OptionalAttr:$_XlaSharding ); let results = (outs TF_Tensor:$output ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_InfeedDequeueTupleOp : TF_Op<"InfeedDequeueTuple", []> { let summary = "Fetches multiple values from infeed as an XLA tuple."; let arguments = (ins OptionalAttr:$_XlaSharding ); let results = (outs Variadic:$outputs ); TF_DerivedResultShapeListAttr shapes = TF_DerivedResultShapeListAttr<0>; TF_DerivedResultTypeListAttr dtypes = TF_DerivedResultTypeListAttr<0>; } def TF_StringFormatOp : TF_Op<"StringFormat", [NoSideEffect]> { let summary = "Formats a string template using a list of tensors."; let description = [{ Formats a string template using a list of tensors, pretty-printing tensor summaries. }]; let arguments = (ins Variadic:$inputs, DefaultValuedAttr:$strtemplate, DefaultValuedAttr:$placeholder, DefaultValuedAttr:$summarize ); let results = (outs TF_StrTensor:$output ); TF_DerivedOperandTypeListAttr T = TF_DerivedOperandTypeListAttr<0>; } //===----------------------------------------------------------------------===// // tf.data ops //===----------------------------------------------------------------------===// def TF_BatchDatasetV2Op : TF_Op<"BatchDatasetV2", [NoSideEffect]> { let summary = [{ Creates a dataset that batches `batch_size` elements from `input_dataset`. }]; let arguments = (ins TF_VariantTensor:$input_dataset, TF_Int64Tensor:$batch_size, TF_BoolTensor:$drop_remainder, DefaultValuedAttr:$parallel_copy, Confined]>:$output_types, Confined]>:$output_shapes ); let results = (outs TF_VariantTensor:$handle ); } def TF_MapDatasetOp : TF_Op<"MapDataset", [NoSideEffect]> { let summary = [{ Creates a dataset that applies `f` to the outputs of `input_dataset`. }]; let arguments = (ins TF_VariantTensor:$input_dataset, Variadic:$other_arguments, SymbolRefAttr:$f, Confined]>:$output_types, Confined]>:$output_shapes, DefaultValuedAttr:$use_inter_op_parallelism, DefaultValuedAttr:$preserve_cardinality ); let results = (outs TF_VariantTensor:$handle ); TF_DerivedOperandTypeListAttr Targuments = TF_DerivedOperandTypeListAttr<1>; } def TF_MapAndBatchDatasetOp : TF_Op<"MapAndBatchDataset", [NoSideEffect]> { let summary = "Creates a dataset that fuses mapping with batching."; let description = [{ Creates a dataset that applies `f` to the outputs of `input_dataset` and then batches `batch_size` of them. Unlike a "MapDataset", which applies `f` sequentially, this dataset invokes up to `batch_size * num_parallel_batches` copies of `f` in parallel. }]; let arguments = (ins TF_VariantTensor:$input_dataset, Variadic:$other_arguments, TF_Int64Tensor:$batch_size, TF_Int64Tensor:$num_parallel_calls, TF_BoolTensor:$drop_remainder, SymbolRefAttr:$f, Confined]>:$output_types, Confined]>:$output_shapes, DefaultValuedAttr:$preserve_cardinality ); let results = (outs TF_VariantTensor:$handle ); TF_DerivedOperandTypeListAttr Targuments = TF_DerivedOperandTypeListAttr<1>; } def TF_ParallelMapDatasetOp : TF_Op<"ParallelMapDataset", [NoSideEffect]> { let summary = [{ Creates a dataset that applies `f` to the outputs of `input_dataset`. }]; let description = [{ Unlike a "MapDataset", which applies `f` sequentially, this dataset invokes up to `num_parallel_calls` copies of `f` in parallel. }]; let arguments = (ins TF_VariantTensor:$input_dataset, Variadic:$other_arguments, TF_Int32Tensor:$num_parallel_calls, SymbolRefAttr:$f, Confined]>:$output_types, Confined]>:$output_shapes, DefaultValuedAttr:$use_inter_op_parallelism, DefaultValuedAttr:$sloppy, DefaultValuedAttr:$preserve_cardinality ); let results = (outs TF_VariantTensor:$handle ); TF_DerivedOperandTypeListAttr Targuments = TF_DerivedOperandTypeListAttr<1>; } def TF_TensorSliceDatasetOp : TF_Op<"TensorSliceDataset", []> { let summary = [{ Creates a dataset that emits each dim-0 slice of `components` once. }]; let arguments = (ins Variadic:$components, Confined]>:$output_shapes ); let results = (outs TF_VariantTensor:$handle ); TF_DerivedOperandTypeListAttr Toutput_types = TF_DerivedOperandTypeListAttr<0>; } def TF_ToBoolOp : TF_Op<"ToBool", [NoSideEffect]> { let summary = "Converts a tensor to a scalar predicate."; let description = [{ Converts a tensor to a scalar predicate with the following rules: - For 0D tensors, truthiness is determined by comparing against a "zero" value. For numerical types it is the obvious zero. For strings it is the empty string. - For >0D tensors, truthiness is determined by looking at the number of elements. If has zero elements, then the result is false. Otherwise the result is true. This matches the behavior of If and While for determining if a tensor counts as true/false for a branch condition. }]; let arguments = (ins TF_Tensor:$input ); let results = (outs 0DTensorOf<[I1]>:$output ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; let builders = [ OpBuilder<(ins "Value":$value), [{ build($_builder, $_state, RankedTensorType::get({}, $_builder.getI1Type()), value); }]>]; } def TF_BesselI0eOp : TF_Op<"BesselI0e", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes the Bessel i0e function of `x` element-wise."; let description = [{ Exponentially scaled modified Bessel function of order 0 defined as `bessel_i0e(x) = exp(-abs(x)) bessel_i0(x)`. This function is faster and numerically stabler than `bessel_i0(x)`. }]; let arguments = (ins TF_FloatTensor:$x ); let results = (outs TF_FloatTensor:$y ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_BesselI1eOp : TF_Op<"BesselI1e", [NoSideEffect, SameOperandsAndResultType]> { let summary = "Computes the Bessel i1e function of `x` element-wise."; let description = [{ Exponentially scaled modified Bessel function of order 0 defined as `bessel_i1e(x) = exp(-abs(x)) bessel_i1(x)`. This function is faster and numerically stabler than `bessel_i1(x)`. }]; let arguments = (ins TF_FloatTensor:$x ); let results = (outs TF_FloatTensor:$y ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_TPUPartitionedCallOp : TF_Op<"TPUPartitionedCall", [CallOpInterface]> { let summary = "Calls a function placed on a specified TPU device."; let arguments = (ins Variadic:$args, TF_Int32Tensor:$device_ordinal, SymbolRefAttr:$f, DefaultValuedAttr:$autotuner_thresh ); let results = (outs Variadic:$output ); TF_DerivedOperandTypeListAttr Tin = TF_DerivedOperandTypeListAttr<0>; TF_DerivedResultTypeListAttr Tout = TF_DerivedResultTypeListAttr<0>; let extraClassDeclaration = [{ // Gets the argument operands to the called function. operand_range getArgOperands() { return args(); } // Returns the callee of this operation. CallInterfaceCallable getCallableForCallee() { return fAttr(); } // returns the callee of this operation. FuncOp func() { return SymbolTable::lookupNearestSymbolFrom(*this, f()); } }]; let verifier = [{ return VerifyPartitionedCall(*this); }]; } def TF_BatchFunctionOp : TF_Op<"BatchFunction", [AttrSizedOperandSegments]> { let summary = [{ Batches all the inputs tensors to the computation done by the function. }]; let description = [{ So, for example, in the following code ```python # This input will be captured. y = tf.placeholder_with_default(1.0, shape=[]) @tf.Defun(tf.float32) def computation(a): return tf.matmul(a, a) + y b = gen_batch_ops.batch_function( f=computation in_tensors=[a], captured_tensors=computation.captured_inputs, Tout=[o.type for o in computation.definition.signature.output_arg], num_batch_threads=1, max_batch_size=10, batch_timeout_micros=100000, # 100ms allowed_batch_sizes=[3, 10], batching_queue="") ``` If more than one session.run call is simultaneously trying to compute `b` the values of `a` will be gathered, non-deterministically concatenated along the first axis, and only one thread will run the computation. Assumes that all arguments of the function are Tensors which will be batched along their first dimension. Arguments that are captured, are not batched. The session.run call which does the concatenation, will use the values of the captured tensors available to it. Therefore, typical uses of captured tensors should involve values which remain unchanged across session.run calls. Inference is a good example of this. SparseTensor is not supported. The return value of the decorated function must be a Tensor or a list/tuple of Tensors. }]; let arguments = (ins Variadic:$in_tensors, Variadic:$captured_tensors, SymbolRefAttr:$f, I64Attr:$num_batch_threads, I64Attr:$max_batch_size, I64Attr:$batch_timeout_micros, DefaultValuedAttr:$max_enqueued_batches, DefaultValuedAttr:$allowed_batch_sizes, StrAttr:$container, StrAttr:$shared_name, StrAttr:$batching_queue, DefaultValuedAttr:$enable_large_batch_splitting, I32ElementsAttr:$operand_segment_sizes ); let results = (outs Variadic:$out_tensors ); TF_DerivedOperandTypeListAttr Tin = TF_DerivedOperandTypeListAttr<0>; TF_DerivedOperandTypeListAttr Tcaptured = TF_DerivedOperandTypeListAttr<1>; TF_DerivedResultTypeListAttr Tout = TF_DerivedResultTypeListAttr<0>; } def TF_AddV2Op : TF_Op<"AddV2", [Commutative, NoSideEffect, ResultsBroadcastableShape, TF_CwiseBinary, TF_LayoutAgnostic, TF_SameOperandsAndResultElementTypeResolveRef]>, WithBroadcastableBinOpBuilder { let summary = "Returns x + y element-wise."; let description = [{ *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) }]; let arguments = (ins TensorOf<[TF_Float, TF_SInt, TF_Complex, TF_Uint8, TF_Uint16, TF_Uint32, TF_Uint64]>:$x, TensorOf<[TF_Float, TF_SInt, TF_Complex, TF_Uint8, TF_Uint16, TF_Uint32, TF_Uint64]>:$y ); let results = (outs TensorOf<[TF_Float, TF_SInt, TF_Complex, TF_Uint8, TF_Uint16, TF_Uint32, TF_Uint64]>:$z ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_DivNoNanOp : TF_Op<"DivNoNan", [NoSideEffect, ResultsBroadcastableShape, TF_SameOperandsAndResultElementTypeResolveRef]>, WithBroadcastableBinOpBuilder { let summary = "Returns 0 if the denominator is zero."; let description = [{ *NOTE*: `DivNoNan` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) }]; let arguments = (ins TensorOf<[TF_Float16, TF_Float32, TF_Float64, TF_Complex]>:$x, TensorOf<[TF_Float16, TF_Float32, TF_Float64, TF_Complex]>:$y ); let results = (outs TensorOf<[TF_Float16, TF_Float32, TF_Float64, TF_Complex]>:$z ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_MaximumOp : TF_Op<"Maximum", [NoSideEffect, ResultsBroadcastableShape, TF_SameOperandsAndResultElementTypeResolveRef]>, WithBroadcastableBinOpBuilder { let summary = "Returns the max of x and y (i.e. x > y ? x : y) element-wise."; let description = [{ *NOTE*: `Maximum` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) }]; let arguments = (ins TensorOf<[TF_Float, TF_Int16, TF_Int32, TF_Int64, TF_Uint8]>:$x, TensorOf<[TF_Float, TF_Int16, TF_Int32, TF_Int64, TF_Uint8]>:$y ); let results = (outs TensorOf<[TF_Float, TF_Int16, TF_Int32, TF_Int64, TF_Uint8]>:$z ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_RealDivOp : TF_Op<"RealDiv", [NoSideEffect, ResultsBroadcastableShape, TF_CwiseBinary]>, WithBroadcastableBinOpBuilder { let summary = "Returns x / y element-wise for real types."; let description = [{ If `x` and `y` are reals, this will return the floating-point division. *NOTE*: `Div` supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) }]; let arguments = (ins TensorOf<[TF_Float, TF_SInt, TF_Complex, TF_Uint16, TF_Uint8]>:$x, TensorOf<[TF_Float, TF_SInt, TF_Complex, TF_Uint16, TF_Uint8]>:$y ); let results = (outs TensorOf<[TF_Float, TF_SInt, TF_Complex, TF_Uint16, TF_Uint8]>:$z ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_AddOp : TF_Op<"Add", [NoSideEffect, ResultsBroadcastableShape, TF_LayoutAgnostic, TF_SameOperandsAndResultElementTypeResolveRef]>, WithBroadcastableBinOpBuilder { let summary = "Returns x + y element-wise."; let description = [{ *NOTE*: `Add` supports broadcasting. `AddN` does not. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) Given two input tensors, the `tf.add` operation computes the sum for every element in the tensor. Both input and output have a range `(-inf, inf)`. }]; let arguments = (ins TensorOf<[TF_NumberNotQuantizedOrStr]>:$x, TensorOf<[TF_NumberNotQuantizedOrStr]>:$y ); let results = (outs TensorOf<[TF_NumberNotQuantizedOrStr]>:$z ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_StatefulStandardNormalV2Op : TF_Op<"StatefulStandardNormalV2", []> { let summary = "Outputs random values from a normal distribution."; let description = [{ The generated values will have mean 0 and standard deviation 1. }]; let arguments = (ins Arg:$resource, TF_Int64Tensor:$algorithm, TF_I32OrI64Tensor:$shape ); let results = (outs TF_FloatTensor:$output ); TF_DerivedOperandTypeAttr shape_dtype = TF_DerivedOperandTypeAttr<2>; TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>; } def TF_StatefulTruncatedNormalOp : TF_Op<"StatefulTruncatedNormal", []> { let summary = "Outputs random values from a truncated normal distribution."; let description = [{ The generated values follow a normal distribution with mean 0 and standard deviation 1, except that values whose magnitude is more than 2 standard deviations from the mean are dropped and re-picked. }]; let arguments = (ins Arg:$resource, TF_Int64Tensor:$algorithm, TF_I32OrI64Tensor:$shape ); let results = (outs TF_FloatTensor:$output ); TF_DerivedOperandTypeAttr shape_dtype = TF_DerivedOperandTypeAttr<2>; TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>; } def TF_StatefulUniformOp : TF_Op<"StatefulUniform", []> { let summary = "Outputs random values from a uniform distribution."; let description = [{ The generated values follow a uniform distribution in the range `[0, 1)`. The lower bound 0 is included in the range, while the upper bound 1 is excluded. }]; let arguments = (ins Arg:$resource, TF_Int64Tensor:$algorithm, TF_I32OrI64Tensor:$shape ); let results = (outs TF_FloatTensor:$output ); TF_DerivedOperandTypeAttr shape_dtype = TF_DerivedOperandTypeAttr<2>; TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>; } def TF_StatefulUniformFullIntOp : TF_Op<"StatefulUniformFullInt", []> { let summary = "Outputs random integers from a uniform distribution."; let description = [{ The generated values are uniform integers covering the whole range of `dtype`. }]; let arguments = (ins Arg:$resource, TF_Int64Tensor:$algorithm, TF_I32OrI64Tensor:$shape ); let results = (outs TensorOf<[TF_Int32, TF_Int64, TF_Uint32, TF_Uint64]>:$output ); TF_DerivedOperandTypeAttr shape_dtype = TF_DerivedOperandTypeAttr<2>; TF_DerivedResultTypeAttr dtype = TF_DerivedResultTypeAttr<0>; } // TODO(lyandy): Investigate supported dtypes (`minval`, `maxval`, `output`) for // `tf.StatefulUniformInt`. tf2xla kernels support i32, i64, ui32, and ui64 // while TensorFlow CPU/GPU kernels only support i32 and i64. def TF_StatefulUniformIntOp : TF_Op<"StatefulUniformInt", []> { let summary = "Outputs random integers from a uniform distribution."; let description = [{ The generated values are uniform integers in the range `[minval, maxval)`. The lower bound `minval` is included in the range, while the upper bound `maxval` is excluded. The random integers are slightly biased unless `maxval - minval` is an exact power of two. The bias is small for values of `maxval - minval` significantly smaller than the range of the output (either `2^32` or `2^64`). }]; let arguments = (ins Arg:$resource, TF_Int64Tensor:$algorithm, TF_I32OrI64Tensor:$shape, TensorOf<[TF_Int32, TF_Int64, TF_Uint32, TF_Uint64]>:$minval, TensorOf<[TF_Int32, TF_Int64, TF_Uint32, TF_Uint64]>:$maxval ); let results = (outs TensorOf<[TF_Int32, TF_Int64, TF_Uint32, TF_Uint64]>:$output ); TF_DerivedOperandTypeAttr shape_dtype = TF_DerivedOperandTypeAttr<2>; TF_DerivedOperandTypeAttr dtype = TF_DerivedOperandTypeAttr<3>; } def TF_CloseSummaryWriterOp : TF_Op<"CloseSummaryWriter", []> { let summary = "Flushes and closes the summary writer."; let description = [{ Also removes it from the resource manager. To reopen, use another CreateSummaryFileWriter op. writer: A handle to the summary writer resource. }]; let arguments = (ins Arg:$writer ); let results = (outs); } // TODO(b/168035831): Model db_uri read/write. def TF_CreateSummaryDbWriterOp : TF_Op<"CreateSummaryDbWriter", []> { let summary = "Creates summary database writer accessible by given resource handle."; let description = [{ This can be used to write tensors from the execution graph directly to a database. Only SQLite is supported right now. This function will create the schema if it doesn't exist. Entries in the Users, Experiments, and Runs tables will be created automatically if they don't already exist. writer: Handle to SummaryWriter resource to overwrite. db_uri: For example "file:/tmp/foo.sqlite". experiment_name: Can't contain ASCII control characters or <>. Case sensitive. If empty, then the Run will not be associated with any Experiment. run_name: Can't contain ASCII control characters or <>. Case sensitive. If empty, then each Tag will not be associated with any Run. user_name: Must be valid as both a DNS label and Linux username. If empty, then the Experiment will not be associated with any User. }]; let arguments = (ins Arg:$writer, TF_StrTensor:$db_uri, TF_StrTensor:$experiment_name, TF_StrTensor:$run_name, TF_StrTensor:$user_name ); let results = (outs); } // TODO(b/168035831): Model logdir read/write. def TF_CreateSummaryFileWriterOp : TF_Op<"CreateSummaryFileWriter", []> { let summary = "Creates a summary file writer accessible by the given resource handle."; let description = [{ writer: A handle to the summary writer resource logdir: Directory where the event file will be written. max_queue: Size of the queue of pending events and summaries. flush_millis: How often, in milliseconds, to flush the pending events and summaries to disk. filename_suffix: Every event file's name is suffixed with this suffix. }]; let arguments = (ins Arg:$writer, TF_StrTensor:$logdir, TF_Int32Tensor:$max_queue, TF_Int32Tensor:$flush_millis, TF_StrTensor:$filename_suffix ); let results = (outs); } def TF_FlushSummaryWriterOp : TF_Op<"FlushSummaryWriter", []> { let summary = "Flushes the writer's unwritten events."; let description = [{ writer: A handle to the summary writer resource. }]; let arguments = (ins Arg:$writer ); let results = (outs); } def TF_ImportEventOp : TF_Op<"ImportEvent", []> { let summary = "Outputs a `tf.Event` protocol buffer."; let description = [{ When CreateSummaryDbWriter is being used, this op can be useful for importing data from event logs. writer: A handle to a summary writer. event: A string containing a binary-encoded tf.Event proto. }]; let arguments = (ins Arg:$writer, TF_StrTensor:$event ); let results = (outs); } def TF_SummaryWriterOp : TF_Op<"SummaryWriter", []> { let summary = "Returns a handle to be used to access a summary writer."; let description = [{ The summary writer is an in-graph resource which can be used by ops to write summaries to event files. writer: the summary writer resource. Scalar handle. }]; let arguments = (ins StrAttr:$shared_name, StrAttr:$container ); let results = (outs Res:$writer ); } def TF_WriteAudioSummaryOp : TF_Op<"WriteAudioSummary", []> { let summary = "Writes a `Summary` protocol buffer with audio."; let description = [{ The summary has up to `max_outputs` summary values containing audio. The audio is built from `tensor` which must be 3-D with shape `[batch_size, frames, channels]` or 2-D with shape `[batch_size, frames]`. The values are assumed to be in the range of `[-1.0, 1.0]` with a sample rate of `sample_rate`. The `tag` argument is a scalar `Tensor` of type `string`. It is used to build the `tag` of the summary values: * If `max_outputs` is 1, the summary value tag is '*tag*/audio'. * If `max_outputs` is greater than 1, the summary value tags are generated sequentially as '*tag*/audio/0', '*tag*/audio/1', etc. writer: A handle to a summary writer. step: The step to write the summary for. tag: Scalar. Used to build the `tag` attribute of the summary values. tensor: 2-D of shape `[batch_size, frames]`. sample_rate: The sample rate of the signal in hertz. max_outputs: Max number of batch elements to generate audio for. }]; let arguments = (ins Arg:$writer, TF_Int64Tensor:$step, TF_StrTensor:$tag, TF_Float32Tensor:$tensor, TF_Float32Tensor:$sample_rate, Confined, [IntMinValue<1>]>:$max_outputs ); let results = (outs); } def TF_WriteGraphSummaryOp : TF_Op<"WriteGraphSummary", []> { let summary = "Writes a `GraphDef` protocol buffer to a `SummaryWriter`."; let description = [{ writer: Handle of `SummaryWriter`. step: The step to write the summary for. tensor: A scalar string of the serialized tf.GraphDef proto. }]; let arguments = (ins Arg:$writer, TF_Int64Tensor:$step, TF_StrTensor:$tensor ); let results = (outs); } def TF_WriteHistogramSummaryOp : TF_Op<"WriteHistogramSummary", []> { let summary = "Writes a histogram summary."; let description = [{ The generated [`Summary`](https://www.tensorflow.org/code/tensorflow/core/framework/summary.proto) has one summary value containing a histogram for `values`. This op reports an `InvalidArgument` error if any value is not finite. writer: A handle to a summary writer. step: The step to write the summary for. tag: Scalar. Tag to use for the `Summary.Value`. values: Any shape. Values to use to build the histogram. }]; let arguments = (ins Arg:$writer, TF_Int64Tensor:$step, TF_StrTensor:$tag, TF_IntOrFpTensor:$values ); let results = (outs); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<3>; } def TF_WriteImageSummaryOp : TF_Op<"WriteImageSummary", []> { let summary = "Writes a `Summary` protocol buffer with images."; let description = [{ The summary has up to `max_images` summary values containing images. The images are built from `tensor` which must be 4-D with shape `[batch_size, height, width, channels]` and where `channels` can be: * 1: `tensor` is interpreted as Grayscale. * 3: `tensor` is interpreted as RGB. * 4: `tensor` is interpreted as RGBA. The images have the same number of channels as the input tensor. For float input, the values are normalized one image at a time to fit in the range `[0, 255]`. `uint8` values are unchanged. The op uses two different normalization algorithms: * If the input values are all positive, they are rescaled so the largest one is 255. * If any input value is negative, the values are shifted so input value 0.0 is at 127. They are then rescaled so that either the smallest value is 0, or the largest one is 255. The `tag` argument is a scalar `Tensor` of type `string`. It is used to build the `tag` of the summary values: * If `max_images` is 1, the summary value tag is '*tag*/image'. * If `max_images` is greater than 1, the summary value tags are generated sequentially as '*tag*/image/0', '*tag*/image/1', etc. The `bad_color` argument is the color to use in the generated images for non-finite input values. It is a `unit8` 1-D tensor of length `channels`. Each element must be in the range `[0, 255]` (It represents the value of a pixel in the output image). Non-finite values in the input tensor are replaced by this tensor in the output image. The default value is the color red. writer: A handle to a summary writer. step: The step to write the summary for. tag: Scalar. Used to build the `tag` attribute of the summary values. tensor: 4-D of shape `[batch_size, height, width, channels]` where `channels` is 1, 3, or 4. max_images: Max number of batch elements to generate images for. bad_color: Color to use for pixels with non-finite values. }]; let arguments = (ins Arg:$writer, TF_Int64Tensor:$step, TF_StrTensor:$tag, TensorOf<[TF_Float16, TF_Float32, TF_Uint8]>:$tensor, TF_Uint8Tensor:$bad_color, Confined, [IntMinValue<1>]>:$max_images ); let results = (outs); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<3>; } def TF_WriteRawProtoSummaryOp : TF_Op<"WriteRawProtoSummary", []> { let summary = "Writes a `Summary` protocol buffer with serialized string `Summary` protocol buffers."; let description = [{ writer: A handle to a summary writer. step: The step to write the summary for. tensor: A tensor holding one or more serialized `Summary` protobufs to write. }]; let arguments = (ins Arg:$writer, TF_Int64Tensor:$step, TF_StrTensor:$tensor ); let results = (outs); } def TF_WriteScalarSummaryOp : TF_Op<"WriteScalarSummary", []> { let summary = "Writes a `Summary` protocol buffer with scalar values."; let description = [{ The input `tag` and `value` must have the scalars. writer: A handle to a summary writer. step: The step to write the summary for. tag: Tag for the summary. value: Value for the summary. }]; let arguments = (ins Arg:$writer, TF_Int64Tensor:$step, TF_StrTensor:$tag, TF_IntOrFpTensor:$value ); let results = (outs); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<3>; } def TF_WriteSummaryOp : TF_Op<"WriteSummary", []> { let summary = "Outputs a `Summary` protocol buffer with a tensor."; let description = [{ writer: A handle to a summary writer. step: The step to write the summary for. tensor: A tensor to serialize. tag: The summary's tag. summary_metadata: Serialized SummaryMetadata protocol buffer containing plugin-related metadata for this summary. }]; let arguments = (ins Arg:$writer, TF_Int64Tensor:$step, TF_Tensor:$tensor, TF_StrTensor:$tag, TF_StrTensor:$summary_metadata ); let results = (outs); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<2>; } def TF_InitializeTableFromDatasetOp : TF_Op<"InitializeTableFromDataset", []> { let summary = ""; let arguments = (ins Arg:$table_handle, TF_VariantTensor:$dataset ); let results = (outs); } // TODO(b/168035831): Model filename read. def TF_InitializeTableFromTextFileV2Op : TF_Op<"InitializeTableFromTextFileV2", []> { let summary = "Initializes a table from a text file."; let description = [{ It inserts one key-value pair into the table for each line of the file. The key and value is extracted from the whole line content, elements from the split line based on `delimiter` or the line number (starting from zero). Where to extract the key and value from a line is specified by `key_index` and `value_index`. - A value of -1 means use the line number(starting from zero), expects `int64`. - A value of -2 means use the whole line content, expects `string`. - A value >= 0 means use the index (starting at zero) of the split line based on `delimiter`. }]; let arguments = (ins Arg:$table_handle, TF_StrTensor:$filename, Confined]>:$key_index, Confined]>:$value_index, Confined, [IntMinValue<-1>]>:$vocab_size, DefaultValuedAttr:$delimiter ); let results = (outs); } // TODO(b/168035831): Model filename read. def TF_CacheDatasetV2Op : TF_Op<"CacheDatasetV2", []> { let summary = ""; let arguments = (ins TF_VariantTensor:$input_dataset, TF_StrTensor:$filename, Arg:$cache, Confined]>:$output_types, Confined]>:$output_shapes ); let results = (outs TF_VariantTensor:$handle ); } def TF__TPUDeviceOrdinalPlaceholderOp : TF_Op<"_TPUDeviceOrdinalPlaceholder", []> { let summary = [{ Placeholder device ordinal that represents device ordinal of a replicated op. }]; let description = [{ This op can be used when certain rewrite passes materialize ops that require a device ordinal of a replicated op but replication logic has been abstracted away using tf_device.replicate op. Subsequent rewrite passes must replace this op with a constant output that represents the correct device ordinal of the replicated operations inside a TPU host. }]; let arguments = (ins); let results = (outs TF_Int64Tensor:$device_ordinal ); } def TF_AssignOp : TF_Op<"Assign", []> { let summary = "Update 'ref' by assigning 'value' to it."; let description = [{ This operation outputs "ref" after the assignment is done. This makes it easier to chain operations that need to use the reset value. This is a side-effecting operation because it will change the value of its argument "ref" in addition to returning the results. }]; let arguments = (ins TF_Tensor:$ref, TF_Tensor:$value, DefaultValuedAttr:$validate_shape, DefaultValuedAttr:$use_locking ); let results = (outs TF_Tensor:$output_ref ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; } def TF_TPUPartitionedInputOp : TF_Op<"TPUPartitionedInput", [NoSideEffect]> { let summary = [{ An op that groups a list of partitioned inputs together. This op }]; let arguments = (ins Variadic:$inputs, DefaultValuedAttr:$partition_dim, OptionalAttr:$_XlaSharding ); let results = (outs TF_Tensor:$output ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; TF_DerivedOperandSizeAttr N = TF_DerivedOperandSizeAttr<0>; } def TF_TPUPartitionedOutputOp : TF_Op<"TPUPartitionedOutput", [NoSideEffect]> { let summary = [{ An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned }]; let description = [{ outputs outside the XLA computation. }]; let arguments = (ins TF_Tensor:$inputs, DefaultValuedAttr:$partition_dim, OptionalAttr:$_XlaSharding ); let results = (outs Variadic:$output ); TF_DerivedOperandTypeAttr T = TF_DerivedOperandTypeAttr<0>; TF_DerivedResultSizeAttr num_splits = TF_DerivedResultSizeAttr<0>; } #endif // TF_OPS