// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "net.h" #if defined(USE_NCNN_SIMPLEOCV) #include "simpleocv.h" #else #include #include #include #endif #include #include #include #include struct Object { cv::Rect_ rect; int label; float prob; }; static inline float intersection_area(const Object& a, const Object& b) { cv::Rect_ inter = a.rect & b.rect; return inter.area(); } static void qsort_descent_inplace(std::vector& faceobjects, int left, int right) { int i = left; int j = right; float p = faceobjects[(left + right) / 2].prob; while (i <= j) { while (faceobjects[i].prob > p) i++; while (faceobjects[j].prob < p) j--; if (i <= j) { // swap std::swap(faceobjects[i], faceobjects[j]); i++; j--; } } #pragma omp parallel sections { #pragma omp section { if (left < j) qsort_descent_inplace(faceobjects, left, j); } #pragma omp section { if (i < right) qsort_descent_inplace(faceobjects, i, right); } } } static void qsort_descent_inplace(std::vector& faceobjects) { if (faceobjects.empty()) return; qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1); } static void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold) { picked.clear(); const int n = faceobjects.size(); std::vector areas(n); for (int i = 0; i < n; i++) { areas[i] = faceobjects[i].rect.width * faceobjects[i].rect.height; } for (int i = 0; i < n; i++) { const Object& a = faceobjects[i]; int keep = 1; for (int j = 0; j < (int)picked.size(); j++) { const Object& b = faceobjects[picked[j]]; // intersection over union float inter_area = intersection_area(a, b); float union_area = areas[i] + areas[picked[j]] - inter_area; // float IoU = inter_area / union_area if (inter_area / union_area > nms_threshold) keep = 0; } if (keep) picked.push_back(i); } } static void generate_proposals(const ncnn::Mat& cls_pred, const ncnn::Mat& dis_pred, int stride, const ncnn::Mat& in_pad, float prob_threshold, std::vector& objects) { const int num_grid = cls_pred.h; int num_grid_x; int num_grid_y; if (in_pad.w > in_pad.h) { num_grid_x = in_pad.w / stride; num_grid_y = num_grid / num_grid_x; } else { num_grid_y = in_pad.h / stride; num_grid_x = num_grid / num_grid_y; } const int num_class = cls_pred.w; const int reg_max_1 = dis_pred.w / 4; for (int i = 0; i < num_grid_y; i++) { for (int j = 0; j < num_grid_x; j++) { const int idx = i * num_grid_x + j; const float* scores = cls_pred.row(idx); // find label with max score int label = -1; float score = -FLT_MAX; for (int k = 0; k < num_class; k++) { if (scores[k] > score) { label = k; score = scores[k]; } } if (score >= prob_threshold) { ncnn::Mat bbox_pred(reg_max_1, 4, (void*)dis_pred.row(idx)); { ncnn::Layer* softmax = ncnn::create_layer("Softmax"); ncnn::ParamDict pd; pd.set(0, 1); // axis pd.set(1, 1); softmax->load_param(pd); ncnn::Option opt; opt.num_threads = 1; opt.use_packing_layout = false; softmax->create_pipeline(opt); softmax->forward_inplace(bbox_pred, opt); softmax->destroy_pipeline(opt); delete softmax; } float pred_ltrb[4]; for (int k = 0; k < 4; k++) { float dis = 0.f; const float* dis_after_sm = bbox_pred.row(k); for (int l = 0; l < reg_max_1; l++) { dis += l * dis_after_sm[l]; } pred_ltrb[k] = dis * stride; } float pb_cx = (j + 0.5f) * stride; float pb_cy = (i + 0.5f) * stride; float x0 = pb_cx - pred_ltrb[0]; float y0 = pb_cy - pred_ltrb[1]; float x1 = pb_cx + pred_ltrb[2]; float y1 = pb_cy + pred_ltrb[3]; Object obj; obj.rect.x = x0; obj.rect.y = y0; obj.rect.width = x1 - x0; obj.rect.height = y1 - y0; obj.label = label; obj.prob = score; objects.push_back(obj); } } } } static int detect_nanodet(const cv::Mat& bgr, std::vector& objects) { ncnn::Net nanodet; nanodet.opt.use_vulkan_compute = true; // nanodet.opt.use_bf16_storage = true; // original pretrained model from https://github.com/RangiLyu/nanodet // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models nanodet.load_param("nanodet_m.param"); nanodet.load_model("nanodet_m.bin"); int width = bgr.cols; int height = bgr.rows; const int target_size = 320; const float prob_threshold = 0.4f; const float nms_threshold = 0.5f; // pad to multiple of 32 int w = width; int h = height; float scale = 1.f; if (w > h) { scale = (float)target_size / w; w = target_size; h = h * scale; } else { scale = (float)target_size / h; h = target_size; w = w * scale; } ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, width, height, w, h); // pad to target_size rectangle int wpad = (w + 31) / 32 * 32 - w; int hpad = (h + 31) / 32 * 32 - h; ncnn::Mat in_pad; ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 0.f); const float mean_vals[3] = {103.53f, 116.28f, 123.675f}; const float norm_vals[3] = {0.017429f, 0.017507f, 0.017125f}; in_pad.substract_mean_normalize(mean_vals, norm_vals); ncnn::Extractor ex = nanodet.create_extractor(); ex.input("input.1", in_pad); std::vector proposals; // stride 8 { ncnn::Mat cls_pred; ncnn::Mat dis_pred; ex.extract("792", cls_pred); ex.extract("795", dis_pred); std::vector objects8; generate_proposals(cls_pred, dis_pred, 8, in_pad, prob_threshold, objects8); proposals.insert(proposals.end(), objects8.begin(), objects8.end()); } // stride 16 { ncnn::Mat cls_pred; ncnn::Mat dis_pred; ex.extract("814", cls_pred); ex.extract("817", dis_pred); std::vector objects16; generate_proposals(cls_pred, dis_pred, 16, in_pad, prob_threshold, objects16); proposals.insert(proposals.end(), objects16.begin(), objects16.end()); } // stride 32 { ncnn::Mat cls_pred; ncnn::Mat dis_pred; ex.extract("836", cls_pred); ex.extract("839", dis_pred); std::vector objects32; generate_proposals(cls_pred, dis_pred, 32, in_pad, prob_threshold, objects32); proposals.insert(proposals.end(), objects32.begin(), objects32.end()); } // sort all proposals by score from highest to lowest qsort_descent_inplace(proposals); // apply nms with nms_threshold std::vector picked; nms_sorted_bboxes(proposals, picked, nms_threshold); int count = picked.size(); objects.resize(count); for (int i = 0; i < count; i++) { objects[i] = proposals[picked[i]]; // adjust offset to original unpadded float x0 = (objects[i].rect.x - (wpad / 2)) / scale; float y0 = (objects[i].rect.y - (hpad / 2)) / scale; float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale; float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale; // clip x0 = std::max(std::min(x0, (float)(width - 1)), 0.f); y0 = std::max(std::min(y0, (float)(height - 1)), 0.f); x1 = std::max(std::min(x1, (float)(width - 1)), 0.f); y1 = std::max(std::min(y1, (float)(height - 1)), 0.f); objects[i].rect.x = x0; objects[i].rect.y = y0; objects[i].rect.width = x1 - x0; objects[i].rect.height = y1 - y0; } return 0; } static void draw_objects(const cv::Mat& bgr, const std::vector& objects) { static const char* class_names[] = { "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" }; cv::Mat image = bgr.clone(); for (size_t i = 0; i < objects.size(); i++) { const Object& obj = objects[i]; fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob, obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0)); char text[256]; sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100); int baseLine = 0; cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); int x = obj.rect.x; int y = obj.rect.y - label_size.height - baseLine; if (y < 0) y = 0; if (x + label_size.width > image.cols) x = image.cols - label_size.width; cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), cv::Scalar(255, 255, 255), -1); cv::putText(image, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); } cv::imshow("image", image); cv::waitKey(0); } int main(int argc, char** argv) { if (argc != 2) { fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); return -1; } const char* imagepath = argv[1]; cv::Mat m = cv::imread(imagepath, 1); if (m.empty()) { fprintf(stderr, "cv::imread %s failed\n", imagepath); return -1; } std::vector objects; detect_nanodet(m, objects); draw_objects(m, objects); return 0; }