// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "net.h" #if defined(USE_NCNN_SIMPLEOCV) #include "simpleocv.h" #else #include #include #include #endif #include #include struct FaceObject { cv::Rect_ rect; cv::Point2f landmark[5]; float prob; }; static inline float intersection_area(const FaceObject& a, const FaceObject& b) { cv::Rect_ inter = a.rect & b.rect; return inter.area(); } static void qsort_descent_inplace(std::vector& faceobjects, int left, int right) { int i = left; int j = right; float p = faceobjects[(left + right) / 2].prob; while (i <= j) { while (faceobjects[i].prob > p) i++; while (faceobjects[j].prob < p) j--; if (i <= j) { // swap std::swap(faceobjects[i], faceobjects[j]); i++; j--; } } #pragma omp parallel sections { #pragma omp section { if (left < j) qsort_descent_inplace(faceobjects, left, j); } #pragma omp section { if (i < right) qsort_descent_inplace(faceobjects, i, right); } } } static void qsort_descent_inplace(std::vector& faceobjects) { if (faceobjects.empty()) return; qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1); } static void nms_sorted_bboxes(const std::vector& faceobjects, std::vector& picked, float nms_threshold) { picked.clear(); const int n = faceobjects.size(); std::vector areas(n); for (int i = 0; i < n; i++) { areas[i] = faceobjects[i].rect.area(); } for (int i = 0; i < n; i++) { const FaceObject& a = faceobjects[i]; int keep = 1; for (int j = 0; j < (int)picked.size(); j++) { const FaceObject& b = faceobjects[picked[j]]; // intersection over union float inter_area = intersection_area(a, b); float union_area = areas[i] + areas[picked[j]] - inter_area; // float IoU = inter_area / union_area if (inter_area / union_area > nms_threshold) keep = 0; } if (keep) picked.push_back(i); } } // copy from src/layer/proposal.cpp static ncnn::Mat generate_anchors(int base_size, const ncnn::Mat& ratios, const ncnn::Mat& scales) { int num_ratio = ratios.w; int num_scale = scales.w; ncnn::Mat anchors; anchors.create(4, num_ratio * num_scale); const float cx = base_size * 0.5f; const float cy = base_size * 0.5f; for (int i = 0; i < num_ratio; i++) { float ar = ratios[i]; int r_w = round(base_size / sqrt(ar)); int r_h = round(r_w * ar); //round(base_size * sqrt(ar)); for (int j = 0; j < num_scale; j++) { float scale = scales[j]; float rs_w = r_w * scale; float rs_h = r_h * scale; float* anchor = anchors.row(i * num_scale + j); anchor[0] = cx - rs_w * 0.5f; anchor[1] = cy - rs_h * 0.5f; anchor[2] = cx + rs_w * 0.5f; anchor[3] = cy + rs_h * 0.5f; } } return anchors; } static void generate_proposals(const ncnn::Mat& anchors, int feat_stride, const ncnn::Mat& score_blob, const ncnn::Mat& bbox_blob, const ncnn::Mat& landmark_blob, float prob_threshold, std::vector& faceobjects) { int w = score_blob.w; int h = score_blob.h; // generate face proposal from bbox deltas and shifted anchors const int num_anchors = anchors.h; for (int q = 0; q < num_anchors; q++) { const float* anchor = anchors.row(q); const ncnn::Mat score = score_blob.channel(q + num_anchors); const ncnn::Mat bbox = bbox_blob.channel_range(q * 4, 4); const ncnn::Mat landmark = landmark_blob.channel_range(q * 10, 10); // shifted anchor float anchor_y = anchor[1]; float anchor_w = anchor[2] - anchor[0]; float anchor_h = anchor[3] - anchor[1]; for (int i = 0; i < h; i++) { float anchor_x = anchor[0]; for (int j = 0; j < w; j++) { int index = i * w + j; float prob = score[index]; if (prob >= prob_threshold) { // apply center size float dx = bbox.channel(0)[index]; float dy = bbox.channel(1)[index]; float dw = bbox.channel(2)[index]; float dh = bbox.channel(3)[index]; float cx = anchor_x + anchor_w * 0.5f; float cy = anchor_y + anchor_h * 0.5f; float pb_cx = cx + anchor_w * dx; float pb_cy = cy + anchor_h * dy; float pb_w = anchor_w * exp(dw); float pb_h = anchor_h * exp(dh); float x0 = pb_cx - pb_w * 0.5f; float y0 = pb_cy - pb_h * 0.5f; float x1 = pb_cx + pb_w * 0.5f; float y1 = pb_cy + pb_h * 0.5f; FaceObject obj; obj.rect.x = x0; obj.rect.y = y0; obj.rect.width = x1 - x0 + 1; obj.rect.height = y1 - y0 + 1; obj.landmark[0].x = cx + (anchor_w + 1) * landmark.channel(0)[index]; obj.landmark[0].y = cy + (anchor_h + 1) * landmark.channel(1)[index]; obj.landmark[1].x = cx + (anchor_w + 1) * landmark.channel(2)[index]; obj.landmark[1].y = cy + (anchor_h + 1) * landmark.channel(3)[index]; obj.landmark[2].x = cx + (anchor_w + 1) * landmark.channel(4)[index]; obj.landmark[2].y = cy + (anchor_h + 1) * landmark.channel(5)[index]; obj.landmark[3].x = cx + (anchor_w + 1) * landmark.channel(6)[index]; obj.landmark[3].y = cy + (anchor_h + 1) * landmark.channel(7)[index]; obj.landmark[4].x = cx + (anchor_w + 1) * landmark.channel(8)[index]; obj.landmark[4].y = cy + (anchor_h + 1) * landmark.channel(9)[index]; obj.prob = prob; faceobjects.push_back(obj); } anchor_x += feat_stride; } anchor_y += feat_stride; } } } static int detect_retinaface(const cv::Mat& bgr, std::vector& faceobjects) { ncnn::Net retinaface; retinaface.opt.use_vulkan_compute = true; // model is converted from // https://github.com/deepinsight/insightface/tree/master/RetinaFace#retinaface-pretrained-models // https://github.com/deepinsight/insightface/issues/669 // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models // retinaface.load_param("retinaface-R50.param"); // retinaface.load_model("retinaface-R50.bin"); retinaface.load_param("mnet.25-opt.param"); retinaface.load_model("mnet.25-opt.bin"); const float prob_threshold = 0.8f; const float nms_threshold = 0.4f; int img_w = bgr.cols; int img_h = bgr.rows; ncnn::Mat in = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h); ncnn::Extractor ex = retinaface.create_extractor(); ex.input("data", in); std::vector faceproposals; // stride 32 { ncnn::Mat score_blob, bbox_blob, landmark_blob; ex.extract("face_rpn_cls_prob_reshape_stride32", score_blob); ex.extract("face_rpn_bbox_pred_stride32", bbox_blob); ex.extract("face_rpn_landmark_pred_stride32", landmark_blob); const int base_size = 16; const int feat_stride = 32; ncnn::Mat ratios(1); ratios[0] = 1.f; ncnn::Mat scales(2); scales[0] = 32.f; scales[1] = 16.f; ncnn::Mat anchors = generate_anchors(base_size, ratios, scales); std::vector faceobjects32; generate_proposals(anchors, feat_stride, score_blob, bbox_blob, landmark_blob, prob_threshold, faceobjects32); faceproposals.insert(faceproposals.end(), faceobjects32.begin(), faceobjects32.end()); } // stride 16 { ncnn::Mat score_blob, bbox_blob, landmark_blob; ex.extract("face_rpn_cls_prob_reshape_stride16", score_blob); ex.extract("face_rpn_bbox_pred_stride16", bbox_blob); ex.extract("face_rpn_landmark_pred_stride16", landmark_blob); const int base_size = 16; const int feat_stride = 16; ncnn::Mat ratios(1); ratios[0] = 1.f; ncnn::Mat scales(2); scales[0] = 8.f; scales[1] = 4.f; ncnn::Mat anchors = generate_anchors(base_size, ratios, scales); std::vector faceobjects16; generate_proposals(anchors, feat_stride, score_blob, bbox_blob, landmark_blob, prob_threshold, faceobjects16); faceproposals.insert(faceproposals.end(), faceobjects16.begin(), faceobjects16.end()); } // stride 8 { ncnn::Mat score_blob, bbox_blob, landmark_blob; ex.extract("face_rpn_cls_prob_reshape_stride8", score_blob); ex.extract("face_rpn_bbox_pred_stride8", bbox_blob); ex.extract("face_rpn_landmark_pred_stride8", landmark_blob); const int base_size = 16; const int feat_stride = 8; ncnn::Mat ratios(1); ratios[0] = 1.f; ncnn::Mat scales(2); scales[0] = 2.f; scales[1] = 1.f; ncnn::Mat anchors = generate_anchors(base_size, ratios, scales); std::vector faceobjects8; generate_proposals(anchors, feat_stride, score_blob, bbox_blob, landmark_blob, prob_threshold, faceobjects8); faceproposals.insert(faceproposals.end(), faceobjects8.begin(), faceobjects8.end()); } // sort all proposals by score from highest to lowest qsort_descent_inplace(faceproposals); // apply nms with nms_threshold std::vector picked; nms_sorted_bboxes(faceproposals, picked, nms_threshold); int face_count = picked.size(); faceobjects.resize(face_count); for (int i = 0; i < face_count; i++) { faceobjects[i] = faceproposals[picked[i]]; // clip to image size float x0 = faceobjects[i].rect.x; float y0 = faceobjects[i].rect.y; float x1 = x0 + faceobjects[i].rect.width; float y1 = y0 + faceobjects[i].rect.height; x0 = std::max(std::min(x0, (float)img_w - 1), 0.f); y0 = std::max(std::min(y0, (float)img_h - 1), 0.f); x1 = std::max(std::min(x1, (float)img_w - 1), 0.f); y1 = std::max(std::min(y1, (float)img_h - 1), 0.f); faceobjects[i].rect.x = x0; faceobjects[i].rect.y = y0; faceobjects[i].rect.width = x1 - x0; faceobjects[i].rect.height = y1 - y0; } return 0; } static void draw_faceobjects(const cv::Mat& bgr, const std::vector& faceobjects) { cv::Mat image = bgr.clone(); for (size_t i = 0; i < faceobjects.size(); i++) { const FaceObject& obj = faceobjects[i]; fprintf(stderr, "%.5f at %.2f %.2f %.2f x %.2f\n", obj.prob, obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height); cv::rectangle(image, obj.rect, cv::Scalar(0, 255, 0)); cv::circle(image, obj.landmark[0], 2, cv::Scalar(0, 255, 255), -1); cv::circle(image, obj.landmark[1], 2, cv::Scalar(0, 255, 255), -1); cv::circle(image, obj.landmark[2], 2, cv::Scalar(0, 255, 255), -1); cv::circle(image, obj.landmark[3], 2, cv::Scalar(0, 255, 255), -1); cv::circle(image, obj.landmark[4], 2, cv::Scalar(0, 255, 255), -1); char text[256]; sprintf(text, "%.1f%%", obj.prob * 100); int baseLine = 0; cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); int x = obj.rect.x; int y = obj.rect.y - label_size.height - baseLine; if (y < 0) y = 0; if (x + label_size.width > image.cols) x = image.cols - label_size.width; cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)), cv::Scalar(255, 255, 255), -1); cv::putText(image, text, cv::Point(x, y + label_size.height), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0)); } cv::imshow("image", image); cv::waitKey(0); } int main(int argc, char** argv) { if (argc != 2) { fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); return -1; } const char* imagepath = argv[1]; cv::Mat m = cv::imread(imagepath, 1); if (m.empty()) { fprintf(stderr, "cv::imread %s failed\n", imagepath); return -1; } std::vector faceobjects; detect_retinaface(m, faceobjects); draw_faceobjects(m, faceobjects); return 0; }