// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "net.h" #include #if defined(USE_NCNN_SIMPLEOCV) #include "simpleocv.h" #else #include #include #include #endif #include #include struct KeyPoint { cv::Point2f p; float prob; }; static int detect_posenet(const cv::Mat& bgr, std::vector& keypoints) { ncnn::Net posenet; posenet.opt.use_vulkan_compute = true; // the simple baseline human pose estimation from gluon-cv // https://gluon-cv.mxnet.io/build/examples_pose/demo_simple_pose.html // mxnet model exported via // pose_net.hybridize() // pose_net.export('pose') // then mxnet2ncnn // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models posenet.load_param("pose.param"); posenet.load_model("pose.bin"); int w = bgr.cols; int h = bgr.rows; ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, w, h, 192, 256); // transforms.ToTensor(), // transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), // R' = (R / 255 - 0.485) / 0.229 = (R - 0.485 * 255) / 0.229 / 255 // G' = (G / 255 - 0.456) / 0.224 = (G - 0.456 * 255) / 0.224 / 255 // B' = (B / 255 - 0.406) / 0.225 = (B - 0.406 * 255) / 0.225 / 255 const float mean_vals[3] = {0.485f * 255.f, 0.456f * 255.f, 0.406f * 255.f}; const float norm_vals[3] = {1 / 0.229f / 255.f, 1 / 0.224f / 255.f, 1 / 0.225f / 255.f}; in.substract_mean_normalize(mean_vals, norm_vals); ncnn::Extractor ex = posenet.create_extractor(); ex.input("data", in); ncnn::Mat out; ex.extract("conv3_fwd", out); // resolve point from heatmap keypoints.clear(); for (int p = 0; p < out.c; p++) { const ncnn::Mat m = out.channel(p); float max_prob = 0.f; int max_x = 0; int max_y = 0; for (int y = 0; y < out.h; y++) { const float* ptr = m.row(y); for (int x = 0; x < out.w; x++) { float prob = ptr[x]; if (prob > max_prob) { max_prob = prob; max_x = x; max_y = y; } } } KeyPoint keypoint; keypoint.p = cv::Point2f(max_x * w / (float)out.w, max_y * h / (float)out.h); keypoint.prob = max_prob; keypoints.push_back(keypoint); } return 0; } static void draw_pose(const cv::Mat& bgr, const std::vector& keypoints) { cv::Mat image = bgr.clone(); // draw bone static const int joint_pairs[16][2] = { {0, 1}, {1, 3}, {0, 2}, {2, 4}, {5, 6}, {5, 7}, {7, 9}, {6, 8}, {8, 10}, {5, 11}, {6, 12}, {11, 12}, {11, 13}, {12, 14}, {13, 15}, {14, 16} }; for (int i = 0; i < 16; i++) { const KeyPoint& p1 = keypoints[joint_pairs[i][0]]; const KeyPoint& p2 = keypoints[joint_pairs[i][1]]; if (p1.prob < 0.2f || p2.prob < 0.2f) continue; cv::line(image, p1.p, p2.p, cv::Scalar(255, 0, 0), 2); } // draw joint for (size_t i = 0; i < keypoints.size(); i++) { const KeyPoint& keypoint = keypoints[i]; fprintf(stderr, "%.2f %.2f = %.5f\n", keypoint.p.x, keypoint.p.y, keypoint.prob); if (keypoint.prob < 0.2f) continue; cv::circle(image, keypoint.p, 3, cv::Scalar(0, 255, 0), -1); } cv::imshow("image", image); cv::waitKey(0); } int main(int argc, char** argv) { if (argc != 2) { fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); return -1; } const char* imagepath = argv[1]; cv::Mat m = cv::imread(imagepath, 1); if (m.empty()) { fprintf(stderr, "cv::imread %s failed\n", imagepath); return -1; } std::vector keypoints; detect_posenet(m, keypoints); draw_pose(m, keypoints); return 0; }