// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "c_api.h" #include #if defined(USE_NCNN_SIMPLEOCV) #include "simpleocv.h" #else #include #include #endif #include #include static int detect_squeezenet(const cv::Mat& bgr, std::vector& cls_scores) { ncnn_net_t squeezenet = ncnn_net_create(); ncnn_option_t opt = ncnn_option_create(); ncnn_option_set_use_vulkan_compute(opt, 1); ncnn_net_set_option(squeezenet, opt); // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models ncnn_net_load_param(squeezenet, "squeezenet_v1.1.param"); ncnn_net_load_model(squeezenet, "squeezenet_v1.1.bin"); ncnn_mat_t in = ncnn_mat_from_pixels_resize(bgr.data, NCNN_MAT_PIXEL_BGR, bgr.cols, bgr.rows, bgr.cols * 3, 227, 227, NULL); const float mean_vals[3] = {104.f, 117.f, 123.f}; ncnn_mat_substract_mean_normalize(in, mean_vals, 0); ncnn_extractor_t ex = ncnn_extractor_create(squeezenet); ncnn_extractor_input(ex, "data", in); ncnn_mat_t out; ncnn_extractor_extract(ex, "prob", &out); const int out_w = ncnn_mat_get_w(out); const float* out_data = (const float*)ncnn_mat_get_data(out); cls_scores.resize(out_w); for (int j = 0; j < out_w; j++) { cls_scores[j] = out_data[j]; } ncnn_mat_destroy(in); ncnn_mat_destroy(out); ncnn_extractor_destroy(ex); ncnn_option_destroy(opt); ncnn_net_destroy(squeezenet); return 0; } static int print_topk(const std::vector& cls_scores, int topk) { // partial sort topk with index int size = cls_scores.size(); std::vector > vec; vec.resize(size); for (int i = 0; i < size; i++) { vec[i] = std::make_pair(cls_scores[i], i); } std::partial_sort(vec.begin(), vec.begin() + topk, vec.end(), std::greater >()); // print topk and score for (int i = 0; i < topk; i++) { float score = vec[i].first; int index = vec[i].second; fprintf(stderr, "%d = %f\n", index, score); } return 0; } int main(int argc, char** argv) { if (argc != 2) { fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]); return -1; } const char* imagepath = argv[1]; cv::Mat m = cv::imread(imagepath, 1); if (m.empty()) { fprintf(stderr, "cv::imread %s failed\n", imagepath); return -1; } std::vector cls_scores; detect_squeezenet(m, cls_scores); print_topk(cls_scores, 3); return 0; }