// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "layer/convolution.h" #include "testutil.h" static int test_convolution(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias) { ncnn::Mat a = RandomMat(w, h, c); ncnn::ParamDict pd; pd.set(0, outch); pd.set(1, kernel); pd.set(2, dilation); pd.set(3, stride); pd.set(4, pad); pd.set(5, bias); pd.set(6, outch * c * kernel * kernel); int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 ncnn::Mat activation_params(2); activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); // beta pd.set(9, activation_type); pd.set(10, activation_params); std::vector weights(bias ? 2 : 1); weights[0] = RandomMat(outch * c * kernel * kernel); if (bias) weights[1] = RandomMat(outch); float epsilon = 0.001; // larget epsilon for winograd optimization if (kernel == 3 && dilation == 1 && stride == 1 && c >= 16 && outch >= 16) { Randomize(a, -1, 1); Randomize(weights[0], -1, 1); epsilon = 0.002; } int ret = test_layer("Convolution", pd, weights, a, epsilon); if (ret != 0) { fprintf(stderr, "test_convolution failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_convolution_0() { static const int kdsp[16][4] = { {1, 1, 1, 0}, {1, 1, 2, 0}, {2, 1, 1, 1}, {2, 1, 2, -233}, {3, 1, 1, 1}, {3, 1, 2, 1}, {3, 2, 1, 1}, {4, 1, 1, 2}, {4, 1, 2, -233}, {4, 2, 1, -234}, {5, 1, 1, -234}, {5, 1, 2, 2}, {5, 2, 2, 2}, {7, 1, 1, 3}, {7, 1, 2, 3}, {7, 2, 1, -233}, }; for (int i = 0; i < 16; i++) { const int k = kdsp[i][0]; const int d = kdsp[i][1]; const int s = kdsp[i][2]; const int p = kdsp[i][3]; int ret = 0 || test_convolution(9, 7, 1, 1, k, d, s, p, 1) || test_convolution(9, 7, 4, 13, k, d, s, p, 0) || test_convolution(9, 7, 13, 4, k, d, s, p, 1) || test_convolution(9, 7, 12, 12, k, d, s, p, 0) || test_convolution(9, 7, 8, 12, k, d, s, p, 1) || test_convolution(9, 7, 8, 13, k, d, s, p, 0) || test_convolution(9, 7, 13, 8, k, d, s, p, 1) || test_convolution(9, 7, 12, 16, k, d, s, p, 0) || test_convolution(9, 7, 15, 15, k, d, s, p, 0) || test_convolution(9, 7, 16, 16, k, d, s, p, 0) || test_convolution(18, 17, 1, 1, k, d, s, p, 1) || test_convolution(18, 17, 4, 13, k, d, s, p, 0) || test_convolution(18, 17, 13, 4, k, d, s, p, 1) || test_convolution(18, 17, 12, 12, k, d, s, p, 0) || test_convolution(18, 17, 8, 12, k, d, s, p, 1) || test_convolution(18, 17, 8, 13, k, d, s, p, 0) || test_convolution(18, 17, 13, 8, k, d, s, p, 1) || test_convolution(18, 17, 12, 16, k, d, s, p, 0) || test_convolution(18, 17, 15, 15, k, d, s, p, 0) || test_convolution(18, 17, 16, 16, k, d, s, p, 0) || test_convolution(25, 33, 1, 1, k, d, s, p, 1) || test_convolution(25, 33, 4, 13, k, d, s, p, 0) || test_convolution(25, 33, 13, 4, k, d, s, p, 1) || test_convolution(25, 33, 12, 12, k, d, s, p, 0) || test_convolution(25, 33, 8, 12, k, d, s, p, 1) || test_convolution(25, 33, 8, 13, k, d, s, p, 0) || test_convolution(25, 33, 13, 8, k, d, s, p, 1) || test_convolution(25, 33, 12, 16, k, d, s, p, 0) || test_convolution(25, 33, 15, 15, k, d, s, p, 0) || test_convolution(25, 33, 16, 16, k, d, s, p, 0); if (ret != 0) return -1; } return 0 || test_convolution(7, 5, 1, 4, 3, 1, 1, 1, 1) || test_convolution(14, 5, 1, 4, 3, 1, 2, 1, 1) || test_convolution(11, 5, 2, 12, 2, 2, 2, 1, 1) || test_convolution(15, 11, 4, 4, 3, 1, 1, 1, 1) || test_convolution(15, 11, 8, 8, 3, 1, 1, 1, 1) || test_convolution(11, 11, 8, 16, 3, 1, 1, 1, 1) || test_convolution(13, 16, 16, 24, 3, 1, 1, 1, 1) || test_convolution(20, 19, 24, 24, 3, 1, 1, 1, 1) || test_convolution(8, 8, 16, 24, 3, 1, 1, 1, 0) || test_convolution(4, 8, 16, 24, 3, 1, 1, 1, 1) || test_convolution(4, 20, 16, 24, 3, 1, 1, 1, 0) || test_convolution(6, 7, 64, 64, 3, 1, 2, 0, 1) || test_convolution(15, 17, 24, 32, 1, 1, 1, 0, 0) || test_convolution(15, 17, 24, 32, 1, 1, 2, 0, 1) || test_convolution(15, 17, 24, 32, 3, 1, 2, 0, 1) || test_convolution(15, 17, 32, 24, 1, 1, 1, 0, 0) || test_convolution(15, 17, 32, 24, 1, 1, 2, 0, 1) || test_convolution(15, 17, 32, 24, 3, 1, 2, 0, 1) || test_convolution(15, 17, 32, 28, 1, 1, 1, 0, 0) || test_convolution(15, 17, 32, 28, 1, 1, 2, 0, 1) || test_convolution(15, 17, 32, 28, 3, 1, 2, 0, 1) || test_convolution(15, 17, 26, 32, 1, 1, 1, 0, 0) || test_convolution(15, 17, 26, 32, 1, 1, 2, 0, 1) || test_convolution(15, 17, 26, 32, 3, 1, 2, 0, 1) || test_convolution(15, 17, 32, 26, 1, 1, 1, 0, 0) || test_convolution(15, 17, 32, 26, 1, 1, 2, 0, 1) || test_convolution(15, 17, 32, 26, 3, 1, 2, 0, 1) || test_convolution(30, 30, 32, 26, 3, 1, 1, 1, 0); } static int test_convolution_vec(int w, int outch, int kernel, int dilation, int stride, int pad, int bias) { ncnn::Mat a = RandomMat(w); ncnn::ParamDict pd; pd.set(0, outch); // num_output pd.set(1, kernel); // kernel_w pd.set(2, dilation); // dilation_w pd.set(3, stride); // stride_w pd.set(4, pad); // pad_w pd.set(5, bias); // bias_term pd.set(6, outch * w * kernel * kernel); int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 ncnn::Mat activation_params(2); activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); // beta pd.set(9, activation_type); pd.set(10, activation_params); std::vector weights(bias ? 2 : 1); weights[0] = RandomMat(outch * w * kernel * kernel); if (bias) weights[1] = RandomMat(outch); int ret = test_layer("Convolution", pd, weights, a); if (ret != 0) { fprintf(stderr, "test_convolution_vec failed w=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_convolution_2() { return 0 || test_convolution_vec(1, 1, 1, 1, 1, 0, 1) || test_convolution_vec(11, 12, 1, 1, 1, 0, 0) || test_convolution_vec(20, 15, 1, 1, 1, 0, 1) || test_convolution_vec(12, 20, 1, 1, 1, 0, 0) || test_convolution_vec(3, 24, 1, 1, 1, 0, 1) || test_convolution_vec(24, 5, 1, 1, 1, 0, 0) || test_convolution_vec(32, 24, 1, 1, 1, 0, 1) || test_convolution_vec(12, 32, 1, 1, 1, 0, 0) || test_convolution_vec(64, 20, 1, 1, 1, 0, 1) || test_convolution_vec(64, 128, 1, 1, 1, 0, 0); } static int test_convolution_dynamic(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias) { ncnn::Mat a = RandomMat(w, h, c); ncnn::ParamDict pd; pd.set(0, 0); pd.set(1, 0); pd.set(2, dilation); pd.set(3, stride); pd.set(4, pad); pd.set(5, bias); pd.set(6, 0); pd.set(19, 1); // dynamic weight int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 ncnn::Mat activation_params(2); activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); // beta pd.set(9, activation_type); pd.set(10, activation_params); std::vector as(bias ? 3 : 2); as[0] = a; as[1] = RandomMat(kernel, kernel, c, outch); if (bias) as[2] = RandomMat(outch); std::vector weights(0); int ret = test_layer("Convolution", pd, weights, as); if (ret != 0) { fprintf(stderr, "test_convolution_dynamic failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_convolution_3() { static const int kdsp[7][4] = { {1, 1, 1, 0}, {1, 1, 2, 0}, {2, 1, 1, 1}, {2, 1, 2, -233}, {3, 1, 1, 1}, {3, 1, 2, 1}, {3, 2, 1, -234}, }; for (int i = 0; i < 7; i++) { const int k = kdsp[i][0]; const int d = kdsp[i][1]; const int s = kdsp[i][2]; const int p = kdsp[i][3]; int ret = 0 || test_convolution_dynamic(11, 10, 1, 1, k, d, s, p, 1) || test_convolution_dynamic(11, 10, 4, 13, k, d, s, p, 0) || test_convolution_dynamic(11, 10, 13, 4, k, d, s, p, 1) || test_convolution_dynamic(11, 10, 12, 12, k, d, s, p, 0) || test_convolution_dynamic(11, 10, 8, 12, k, d, s, p, 1) || test_convolution_dynamic(11, 10, 8, 13, k, d, s, p, 0) || test_convolution_dynamic(11, 10, 13, 8, k, d, s, p, 1) || test_convolution_dynamic(11, 10, 12, 16, k, d, s, p, 0) || test_convolution_dynamic(11, 10, 15, 15, k, d, s, p, 0) || test_convolution_dynamic(11, 10, 16, 16, k, d, s, p, 0); if (ret != 0) return -1; } return 0; } #if NCNN_INT8 static int test_convolution_int8(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, bool requant = false) { ncnn::Mat a = RandomMat(w, h, c); ncnn::ParamDict pd; pd.set(0, outch); pd.set(1, kernel); pd.set(2, dilation); pd.set(3, stride); pd.set(4, pad); pd.set(5, bias); pd.set(6, outch * c * kernel * kernel); pd.set(8, requant ? 101 : 1); // int8_scale_term int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 ncnn::Mat activation_params(2); activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); // beta pd.set(9, activation_type); pd.set(10, activation_params); std::vector weights(bias ? 5 : 4); weights[0] = RandomMat(outch * c * kernel * kernel); ncnn::Mat weight_scales = scales_mat(weights[0], outch, c * kernel * kernel, c * kernel * kernel); ncnn::Mat input_scales = scales_mat(a, 1, w * h * c, a.cstep); ncnn::Mat top_scales = requant ? scales_mat(a, 1, w * h * c, a.cstep) : ncnn::Mat(); if (bias) { weights[1] = RandomMat(outch); weights[2] = weight_scales; weights[3] = input_scales; weights[4] = top_scales; } else { weights[1] = weight_scales; weights[2] = input_scales; weights[3] = top_scales; } int flag = TEST_LAYER_DISABLE_GPU_TESTING; int ret = test_layer("Convolution", pd, weights, a, requant ? 1.0f : 0.001f, 0, flag); if (ret != 0) { fprintf(stderr, "test_convolution_int8 failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d requant=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, requant, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_convolution_1() { static const int kdsp[16][4] = { {1, 1, 1, 0}, {1, 1, 2, 0}, {2, 1, 1, 1}, {2, 1, 2, -233}, {3, 1, 1, 1}, {3, 1, 2, 1}, {3, 2, 1, 1}, {4, 1, 1, 2}, {4, 1, 2, -233}, {4, 2, 1, -234}, {5, 1, 1, -234}, {5, 1, 2, 2}, {5, 2, 2, 2}, {7, 1, 1, 3}, {7, 1, 2, 3}, {7, 2, 1, -233}, }; for (int i = 0; i < 16; i++) { const int k = kdsp[i][0]; const int d = kdsp[i][1]; const int s = kdsp[i][2]; const int p = kdsp[i][3]; int ret = 0 || test_convolution_int8(9, 7, 1, 1, k, d, s, p, 1) || test_convolution_int8(9, 7, 2, 2, k, d, s, p, 1) || test_convolution_int8(9, 7, 3, 3, k, d, s, p, 1) || test_convolution_int8(9, 7, 4, 4, k, d, s, p, 1) || test_convolution_int8(9, 7, 7, 7, k, d, s, p, 1) || test_convolution_int8(9, 7, 8, 8, k, d, s, p, 1) || test_convolution_int8(9, 7, 15, 15, k, d, s, p, 1) || test_convolution_int8(9, 7, 16, 15, k, d, s, p, 1) || test_convolution_int8(9, 7, 15, 16, k, d, s, p, 1) || test_convolution_int8(9, 7, 16, 16, k, d, s, p, 1); if (ret != 0) return -1; } for (int i = 0; i < 16; i++) { const int k = kdsp[i][0]; const int d = kdsp[i][1]; const int s = kdsp[i][2]; const int p = kdsp[i][3]; int ret = 0 || test_convolution_int8(9, 7, 1, 1, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 1, 1, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 2, 2, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 3, 3, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 4, 4, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 7, 7, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 8, 8, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 15, 15, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 16, 15, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 15, 16, k, d, s, p, 1, true) || test_convolution_int8(9, 7, 16, 16, k, d, s, p, 1, true); if (ret != 0) return -1; } return 0 || test_convolution_int8(11, 11, 8, 16, 3, 1, 1, 1, 1) || test_convolution_int8(13, 16, 16, 24, 3, 1, 1, 1, 1) || test_convolution_int8(8, 8, 16, 24, 3, 1, 1, 1, 0) || test_convolution_int8(4, 8, 16, 24, 3, 1, 1, 1, 1) || test_convolution_int8(4, 20, 16, 24, 3, 1, 1, 1, 0) || test_convolution_int8(6, 7, 64, 64, 3, 1, 2, 0, 1) || test_convolution_int8(25, 33, 16, 15, 3, 1, 1, 1, 0); } #endif // NCNN_INT8 int main() { SRAND(7767517); #if NCNN_INT8 return 0 || test_convolution_0() || test_convolution_1() || test_convolution_2() || test_convolution_3(); #else return 0 || test_convolution_0() || test_convolution_2() || test_convolution_3(); #endif }