// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "layer/innerproduct.h" #include "testutil.h" static int test_innerproduct(const ncnn::Mat& a, int outch, int bias) { ncnn::ParamDict pd; pd.set(0, outch); // num_output pd.set(1, bias); // bias_term pd.set(2, outch * a.w * a.h * a.c); int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 ncnn::Mat activation_params(2); activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); // beta pd.set(9, activation_type); pd.set(10, activation_params); std::vector weights(bias ? 2 : 1); weights[0] = RandomMat(outch * a.w * a.h * a.c); if (bias) weights[1] = RandomMat(outch); int ret = test_layer("InnerProduct", pd, weights, a); if (ret != 0) { fprintf(stderr, "test_innerproduct failed a.dims=%d a=(%d %d %d) outch=%d bias=%d act=%d actparams=[%f,%f]\n", a.dims, a.w, a.h, a.c, outch, bias, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_innerproduct_0() { return 0 || test_innerproduct(RandomMat(1, 3, 1), 1, 1) || test_innerproduct(RandomMat(3, 2, 2), 2, 0) || test_innerproduct(RandomMat(9, 3, 8), 7, 1) || test_innerproduct(RandomMat(2, 2, 8), 8, 0) || test_innerproduct(RandomMat(4, 3, 15), 8, 1) || test_innerproduct(RandomMat(6, 2, 16), 16, 0) || test_innerproduct(RandomMat(6, 2, 16), 7, 1) || test_innerproduct(RandomMat(6, 2, 5), 16, 1); } static int test_innerproduct_1() { return 0 || test_innerproduct(RandomMat(1, 1), 1, 1) || test_innerproduct(RandomMat(3, 2), 2, 0) || test_innerproduct(RandomMat(9, 8), 7, 1) || test_innerproduct(RandomMat(2, 8), 8, 0) || test_innerproduct(RandomMat(4, 15), 8, 1) || test_innerproduct(RandomMat(6, 16), 16, 0) || test_innerproduct(RandomMat(6, 16), 7, 1) || test_innerproduct(RandomMat(6, 5), 16, 1); } static int test_innerproduct_2() { return 0 || test_innerproduct(RandomMat(1), 1, 1) || test_innerproduct(RandomMat(2), 2, 0) || test_innerproduct(RandomMat(8), 7, 1) || test_innerproduct(RandomMat(8), 8, 0) || test_innerproduct(RandomMat(15), 8, 1) || test_innerproduct(RandomMat(15), 15, 1) || test_innerproduct(RandomMat(16), 16, 0) || test_innerproduct(RandomMat(16), 7, 1) || test_innerproduct(RandomMat(5), 16, 0) || test_innerproduct(RandomMat(32), 16, 1) || test_innerproduct(RandomMat(12), 16, 0) || test_innerproduct(RandomMat(16), 12, 1) || test_innerproduct(RandomMat(24), 32, 1); } #if NCNN_INT8 static int test_innerproduct_int8(const ncnn::Mat& a, int outch, int bias) { ncnn::ParamDict pd; pd.set(0, outch); // num_output pd.set(1, bias); // bias_term pd.set(2, outch * a.w * a.h * a.c); pd.set(8, 1); // int8_scale_term int activation_type = RAND() % 7; // 0 1 2 3 4 5 6 ncnn::Mat activation_params(2); activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); // beta pd.set(9, activation_type); pd.set(10, activation_params); std::vector weights(bias ? 4 : 3); const int k = a.w * a.h * a.c; weights[0] = RandomMat(outch * k); ncnn::Mat weight_scales = scales_mat(weights[0], outch, k, k); ncnn::Mat input_scales = scales_mat(a, 1, k, k); if (bias) { weights[1] = RandomMat(outch); weights[2] = weight_scales; weights[3] = input_scales; } else { weights[1] = weight_scales; weights[2] = input_scales; } int flag = TEST_LAYER_DISABLE_GPU_TESTING; int ret = test_layer("InnerProduct", pd, weights, a, 0.001f, 0, flag); if (ret != 0) { fprintf(stderr, "test_innerproduct_int8 failed a.dims=%d a=(%d %d %d) outch=%d bias=%d act=%d actparams=[%f,%f]\n", a.dims, a.w, a.h, a.c, outch, bias, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_innerproduct_3() { return 0 || test_innerproduct_int8(RandomMat(1, 3, 1), 1, 1) || test_innerproduct_int8(RandomMat(3, 2, 2), 2, 1) || test_innerproduct_int8(RandomMat(5, 3, 3), 3, 1) || test_innerproduct_int8(RandomMat(7, 2, 3), 12, 1) || test_innerproduct_int8(RandomMat(9, 3, 4), 4, 1) || test_innerproduct_int8(RandomMat(2, 2, 7), 7, 1) || test_innerproduct_int8(RandomMat(4, 3, 8), 3, 1) || test_innerproduct_int8(RandomMat(6, 2, 8), 8, 1) || test_innerproduct_int8(RandomMat(8, 3, 15), 15, 1) || test_innerproduct_int8(RandomMat(7, 2, 16), 4, 1) || test_innerproduct_int8(RandomMat(6, 3, 16), 16, 1); } #endif // NCNN_INT8 static int test_innerproduct_gemm(const ncnn::Mat& a, int outch, int bias) { ncnn::ParamDict pd; pd.set(0, outch); pd.set(1, bias); pd.set(2, outch * a.w); int activation_type = RAND() % 7; ncnn::Mat activation_params(2); activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); pd.set(9, activation_type); pd.set(10, activation_params); std::vector weights(bias ? 2 : 1); weights[0] = RandomMat(outch * a.w); if (bias) weights[1] = RandomMat(outch); int ret = test_layer("InnerProduct", pd, weights, a); if (ret != 0) { fprintf(stderr, "test_innerproduct_gemm failed a.dims=%d a=(%d %d %d) outch=%d bias=%d act=%d actparams=[%f,%f]\n", a.dims, a.w, a.h, a.c, outch, bias, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_innerproduct_4() { return 0 || test_innerproduct_gemm(RandomMat(1, 5), 1, 1) || test_innerproduct_gemm(RandomMat(3, 2), 2, 0) || test_innerproduct_gemm(RandomMat(9, 8), 7, 1) || test_innerproduct_gemm(RandomMat(2, 8), 8, 0) || test_innerproduct_gemm(RandomMat(13, 12), 8, 1) || test_innerproduct_gemm(RandomMat(16, 12), 16, 0) || test_innerproduct_gemm(RandomMat(11, 24), 8, 0) || test_innerproduct_gemm(RandomMat(13, 24), 12, 1) || test_innerproduct_gemm(RandomMat(15, 12), 20, 1) || test_innerproduct_gemm(RandomMat(16, 12), 11, 1) || test_innerproduct_gemm(RandomMat(19, 16), 16, 1) || test_innerproduct_gemm(RandomMat(14, 15), 8, 1) || test_innerproduct_gemm(RandomMat(17, 15), 12, 1) || test_innerproduct_gemm(RandomMat(12, 16), 7, 1) || test_innerproduct_gemm(RandomMat(11, 32), 32, 1) || test_innerproduct_gemm(RandomMat(12, 32), 24, 1) || test_innerproduct_gemm(RandomMat(13, 32), 12, 1) || test_innerproduct_gemm(RandomMat(14, 32), 14, 1) || test_innerproduct_gemm(RandomMat(15, 32), 32, 1) || test_innerproduct_gemm(RandomMat(16, 24), 32, 1) || test_innerproduct_gemm(RandomMat(17, 12), 32, 1) || test_innerproduct_gemm(RandomMat(18, 14), 32, 1); } #if NCNN_INT8 static int test_innerproduct_gemm_int8(const ncnn::Mat& a, int outch, int bias) { ncnn::ParamDict pd; pd.set(0, outch); pd.set(1, bias); pd.set(2, outch * a.w); pd.set(8, 1); // int8_scale_term std::vector weights(bias ? 4 : 3); const int k = a.w; weights[0] = RandomMat(outch * k); ncnn::Mat weight_scales = scales_mat(weights[0], outch, k, k); ncnn::Mat input_scales = scales_mat(a, 1, k, k); if (bias) { weights[1] = RandomMat(outch); weights[2] = weight_scales; weights[3] = input_scales; } else { weights[1] = weight_scales; weights[2] = input_scales; } int flag = TEST_LAYER_DISABLE_GPU_TESTING; int ret = test_layer("InnerProduct", pd, weights, a, 0.001f, 0, flag); if (ret != 0) { fprintf(stderr, "test_innerproduct_gemm_int8 failed a.dims=%d a=(%d %d %d) outch=%d bias=%d\n", a.dims, a.w, a.h, a.c, outch, bias); } return ret; } static int test_innerproduct_5() { return 0 || test_innerproduct_gemm_int8(RandomMat(1, 5), 1, 1) || test_innerproduct_gemm_int8(RandomMat(3, 2), 2, 0) || test_innerproduct_gemm_int8(RandomMat(9, 8), 7, 1) || test_innerproduct_gemm_int8(RandomMat(2, 8), 8, 0) || test_innerproduct_gemm_int8(RandomMat(13, 12), 8, 1) || test_innerproduct_gemm_int8(RandomMat(16, 12), 16, 0) || test_innerproduct_gemm_int8(RandomMat(4, 15), 8, 1) || test_innerproduct_gemm_int8(RandomMat(6, 16), 16, 0) || test_innerproduct_gemm_int8(RandomMat(12, 16), 7, 1); } #endif // NCNN_INT8 int main() { SRAND(7767517); #if NCNN_INT8 return 0 || test_innerproduct_0() || test_innerproduct_1() || test_innerproduct_2() || test_innerproduct_3() || test_innerproduct_4() || test_innerproduct_5(); #else return 0 || test_innerproduct_0() || test_innerproduct_1() || test_innerproduct_2() || test_innerproduct_4(); #endif }