// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "layer/yolov3detectionoutput.h" #include "testutil.h" static int test_yolov3detectionoutput(const std::vector& a, int num_class, int num_box, float confidence_threshold, float nms_threshold, ncnn::Mat& biases, ncnn::Mat& mask, ncnn::Mat& anchors_scale) { ncnn::ParamDict pd; pd.set(0, num_class); pd.set(1, num_box); pd.set(2, confidence_threshold); pd.set(3, nms_threshold); pd.set(4, biases); pd.set(5, mask); pd.set(6, anchors_scale); std::vector weights(0); int ret = test_layer("Yolov3DetectionOutput", pd, weights, a); if (ret != 0) { fprintf(stderr, "test_yolov3detectionoutput failed a.dims=%d a=(%d %d %d) ", a[0].dims, a[0].w, a[0].h, a[0].c); fprintf(stderr, " num_class=%d num_box=%d", num_class, num_box); fprintf(stderr, " confidence_threshold=%f nms_threshold=%f\n", confidence_threshold, nms_threshold); } return ret; } static ncnn::Mat create_mat_from(const float* src, int length) { ncnn::Mat ret(length); memcpy(ret.data, src, length * sizeof(float)); return ret; } static ncnn::Mat MyRandomMat(int w, int h, int c) { ncnn::Mat m(w, h, c); Randomize(m, -15.f, 1.5f); return m; } static int test_yolov3detectionoutput_v4() { const float b[] = {12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401}; const float m[] = {0, 1, 2, 3, 4, 5, 6, 7, 8}; const float s[] = {9.6, 17.6, 33.6}; ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0])); ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0])); ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0])); std::vector a(3); a[0] = MyRandomMat(76, 76, 255); a[1] = MyRandomMat(38, 38, 255); a[2] = MyRandomMat(19, 19, 255); return 0 || test_yolov3detectionoutput(a, 80, 3, 0.55f, 0.45f, biases, mask, anchors_scale); } static int test_yolov3detectionoutput_v4tiny() { const float b[] = {10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319}; const float m[] = {3, 4, 5, 1, 2, 3}; const float s[] = {33.6, 16.8}; ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0])); ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0])); ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0])); std::vector a(2); a[0] = MyRandomMat(13, 13, 255); a[1] = MyRandomMat(26, 26, 255); return 0 || test_yolov3detectionoutput(a, 80, 3, 0.4f, 0.45f, biases, mask, anchors_scale); } static int test_yolov3detectionoutput_v3() { const float b[] = {10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326}; const float m[] = {6, 7, 8, 3, 4, 5, 0, 1, 2}; const float s[] = {32, 16, 8}; ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0])); ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0])); ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0])); std::vector a(3); a[0] = MyRandomMat(19, 19, 255); a[1] = MyRandomMat(38, 38, 255); a[2] = MyRandomMat(76, 76, 255); return 0 || test_yolov3detectionoutput(a, 80, 3, 0.6f, 0.45f, biases, mask, anchors_scale); } static int test_yolov3detectionoutput_v3tiny() { const float b[] = {10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319}; const float m[] = {3, 4, 5, 1, 2, 3}; const float s[] = {32, 16}; ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0])); ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0])); ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0])); std::vector a(2); a[0] = MyRandomMat(13, 13, 255); a[1] = MyRandomMat(26, 26, 255); return 0 || test_yolov3detectionoutput(a, 80, 3, 0.3f, 0.45f, biases, mask, anchors_scale); } int main() { SRAND(7767517); return 0 || test_yolov3detectionoutput_v3tiny() || test_yolov3detectionoutput_v3() || test_yolov3detectionoutput_v4tiny() || test_yolov3detectionoutput_v4(); }