// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include #include #include #include #include // ncnn public header #include "datareader.h" #include "layer.h" #include "layer_type.h" #include "net.h" // ncnn private header #include "layer/batchnorm.h" #include "layer/bias.h" #include "layer/binaryop.h" #include "layer/clip.h" #include "layer/concat.h" #include "layer/convolution.h" #include "layer/convolution1d.h" #include "layer/convolution3d.h" #include "layer/convolutiondepthwise.h" #include "layer/convolutiondepthwise1d.h" #include "layer/convolutiondepthwise3d.h" #include "layer/crop.h" #include "layer/deconvolution.h" #include "layer/deconvolution1d.h" #include "layer/deconvolution3d.h" #include "layer/deconvolutiondepthwise.h" #include "layer/deconvolutiondepthwise1d.h" #include "layer/deconvolutiondepthwise3d.h" #include "layer/detectionoutput.h" #include "layer/dropout.h" #include "layer/eltwise.h" #include "layer/elu.h" #include "layer/embed.h" #include "layer/exp.h" #include "layer/expanddims.h" #include "layer/flatten.h" #include "layer/gelu.h" #include "layer/gemm.h" #include "layer/groupnorm.h" #include "layer/gru.h" #include "layer/hardsigmoid.h" #include "layer/hardswish.h" #include "layer/innerproduct.h" #include "layer/input.h" #include "layer/instancenorm.h" #include "layer/interp.h" #include "layer/layernorm.h" #include "layer/log.h" #include "layer/lrn.h" #include "layer/lstm.h" #include "layer/matmul.h" #include "layer/memorydata.h" #include "layer/mvn.h" #include "layer/multiheadattention.h" #include "layer/normalize.h" #include "layer/padding.h" #include "layer/permute.h" #include "layer/pixelshuffle.h" #include "layer/pooling.h" #include "layer/pooling1d.h" #include "layer/pooling3d.h" #include "layer/power.h" #include "layer/prelu.h" #include "layer/priorbox.h" #include "layer/proposal.h" #include "layer/psroipooling.h" #include "layer/quantize.h" #include "layer/reduction.h" #include "layer/relu.h" #include "layer/reorg.h" #include "layer/requantize.h" #include "layer/reshape.h" #include "layer/rnn.h" #include "layer/roialign.h" #include "layer/roipooling.h" #include "layer/scale.h" #include "layer/shufflechannel.h" #include "layer/slice.h" #include "layer/softmax.h" #include "layer/split.h" #include "layer/squeeze.h" #include "layer/threshold.h" #include "layer/unaryop.h" #include "layer/yolodetectionoutput.h" #include "layer/yolov3detectionoutput.h" // for gen_random_weight #include "../tests/prng.h" static struct prng_rand_t g_prng_rand_state; #define SRAND(seed) prng_srand(seed, &g_prng_rand_state) #define RAND() prng_rand(&g_prng_rand_state) class MemoryFootprintAllocator : public ncnn::Allocator { public: MemoryFootprintAllocator() { current_memory_usage = 0; memory_footprint = 0; } virtual void* fastMalloc(size_t size) { ncnn::MutexLockGuard g(lock); void* ptr = ncnn::fastMalloc(size); bookkeeper[ptr] = size; current_memory_usage += size; memory_footprint = std::max(memory_footprint, current_memory_usage); return ptr; } virtual void fastFree(void* ptr) { ncnn::MutexLockGuard g(lock); size_t size = bookkeeper[ptr]; current_memory_usage -= size; bookkeeper.erase(bookkeeper.find(ptr)); ncnn::fastFree(ptr); } public: int current_memory_usage; int memory_footprint; ncnn::Mutex lock; std::map bookkeeper; }; class CustomLayer : public ncnn::Layer { public: virtual int load_param(const ncnn::ParamDict& pd) { mpd = pd; return 0; } void write_param(FILE* pp) { for (int i = 0; i < NCNN_MAX_PARAM_COUNT; i++) { int type = mpd.type(i); if (type == 0) continue; if (type == 2) { fprintf(pp, " %d=%d", i, mpd.get(i, 0)); } if (type == 3) { fprintf(pp, " %d=%e", i, mpd.get(i, 0.f)); } if (type == 5) { ncnn::Mat v = mpd.get(i, ncnn::Mat()); int len = v.w; fprintf(pp, " %d=%d", -i - 23300, len); const int* p = v; for (int j = 0; j < len; j++) { fprintf(pp, ",%d", p[j]); } } if (type == 6) { ncnn::Mat v = mpd.get(i, ncnn::Mat()); int len = v.w; fprintf(pp, " %d=%d", -i - 23300, len); const float* p = v; for (int j = 0; j < len; j++) { fprintf(pp, ",%e", p[j]); } } } } public: ncnn::ParamDict mpd; }; DEFINE_LAYER_CREATOR(CustomLayer) class ModelWriter : public ncnn::Net { public: ModelWriter(); virtual ncnn::Layer* create_custom_layer(const char* type); std::vector& blobs; std::vector& layers; bool has_custom_layer; public: // 0=fp32 1=fp16 int storage_type; int gen_random_weight; // Cut param and bin -1=no cut int cutstart; int cutend; public: int set_cutparam(const char* cutstartname, const char* cutendname); int shape_inference(); int estimate_memory_footprint(); public: int fprintf_param_int_array(int id, const ncnn::Mat& m, FILE* pp); int fprintf_param_float_array(int id, const ncnn::Mat& m, FILE* pp); int fwrite_weight_tag_data(const ncnn::Mat& data, FILE* bp, float a = -1.2f, float b = 1.2f); int fwrite_weight_data(const ncnn::Mat& data, FILE* bp, float a = -1.2f, float b = 1.2f); int save(const char* parampath, const char* binpath); }; ModelWriter::ModelWriter() : blobs(mutable_blobs()), layers(mutable_layers()) { has_custom_layer = false; gen_random_weight = false; cutstart = -1; cutend = -1; SRAND(7767517); } ncnn::Layer* ModelWriter::create_custom_layer(const char* type) { ncnn::Layer* layer = Net::create_custom_layer(type); if (layer) return layer; fprintf(stderr, "create_custom_layer %s\n", type); register_custom_layer(type, CustomLayer_layer_creator); has_custom_layer = true; return Net::create_custom_layer(type); } int ModelWriter::set_cutparam(const char* cutstartname, const char* cutendname) { if (cutstartname != nullptr) { int layindex = find_layer_index_by_name(cutstartname); if (layindex >= 0) { cutstart = layindex; fprintf(stderr, "cutstart layer %d:%s\n", layindex, cutstartname); } else { fprintf(stderr, "not find target cutstart layer %s\n", cutstartname); return -1; } } if (cutendname != nullptr) { int layindex = find_layer_index_by_name(cutendname); if (layindex >= 0) { cutend = layindex; fprintf(stderr, "cutend layer %d:%s\n", layindex, cutendname); } else { fprintf(stderr, "not find target cutend layer %s\n", cutendname); return -1; } } return 0; } int ModelWriter::shape_inference() { if (has_custom_layer) { fprintf(stderr, "model has custom layer, shape_inference skipped\n"); return -1; } const size_t layer_count = layers.size(); const size_t blob_count = blobs.size(); // recreate layer pipeline for param and weight changes for (size_t i = 0; i < layer_count; i++) { ncnn::Layer* layer = layers[i]; layer->destroy_pipeline(opt); int cret = layer->create_pipeline(opt); if (cret != 0) { NCNN_LOGE("layer create_pipeline %d %s failed", (int)i, layer->name.c_str()); return -1; } } ncnn::Extractor ex = create_extractor(); // prepare Input blobs for (size_t i = 0; i < layer_count; i++) { const ncnn::Layer* layer = layers[i]; if (layer->type == "ncnnfused") continue; if (layer->type != "Input") continue; ncnn::Input* input = (ncnn::Input*)layer; int w = input->w; int h = input->h; int c = input->c; int dims = 0; if (w == 0 && h == 0 && c == 0) dims = 0; if (w != 0 && h == 0 && c == 0) dims = 1; if (w != 0 && h != 0 && c == 0) dims = 2; if (w != 0 && h != 0 && c != 0) dims = 3; if (dims == 0) { fprintf(stderr, "Input layer %s without shape info, shape_inference skipped\n", layer->name.c_str()); return -1; } ncnn::Mat m; if (dims == 1) m.create(w); if (dims == 2) m.create(w, h); if (dims == 3) m.create(w, h, c); ex.input(layer->tops[0], m); } // prepare blobs with predefined shape for (size_t i = 0; i < blob_count; i++) { const ncnn::Blob& blob = blobs[i]; int dims = blob.shape.dims; int w = blob.shape.w; int h = blob.shape.h; int c = blob.shape.c; if (dims == 0) continue; ncnn::Mat m; if (dims == 1) m.create(w); if (dims == 2) m.create(w, h); if (dims == 3) m.create(w, h, c); m.fill(0.f); ex.input(int(i), m); } fprintf(stderr, "shape_inference\n"); // resolve all layer output blob shape for (size_t i = 0; i < layer_count; i++) { const ncnn::Layer* layer = layers[i]; if (layer->type == "ncnnfused") continue; for (size_t j = 0; j < layer->tops.size(); j++) { int top_blob_index = layer->tops[j]; ncnn::Mat m; ex.extract(top_blob_index, m); blobs[top_blob_index].shape = m; } } // assign all layer blob shape for (size_t i = 0; i < layer_count; i++) { ncnn::Layer* layer = layers[i]; if (layer->type == "ncnnfused") continue; layer->bottom_shapes.resize(layer->bottoms.size()); for (size_t j = 0; j < layer->bottoms.size(); j++) { int bottom_blob_index = layer->bottoms[j]; layer->bottom_shapes[j] = blobs[bottom_blob_index].shape; } layer->top_shapes.resize(layer->tops.size()); for (size_t j = 0; j < layer->tops.size(); j++) { int top_blob_index = layer->tops[j]; layer->top_shapes[j] = blobs[top_blob_index].shape; // fprintf(stderr, "%d %4d %4d %4d | %2d %s\n", blobs[top_blob_index].shape.dims, blobs[top_blob_index].shape.w, blobs[top_blob_index].shape.h, blobs[top_blob_index].shape.c, top_blob_index, blobs[top_blob_index].name.c_str()); } } return 0; } int ModelWriter::estimate_memory_footprint() { if (has_custom_layer) { fprintf(stderr, "model has custom layer, estimate_memory_footprint skipped\n"); return -1; } const size_t layer_count = layers.size(); const size_t blob_count = blobs.size(); MemoryFootprintAllocator allocator; ncnn::Extractor ex = create_extractor(); ex.set_blob_allocator(&allocator); ex.set_workspace_allocator(&allocator); // prepare Input blobs for (size_t i = 0; i < layer_count; i++) { const ncnn::Layer* layer = layers[i]; if (layer->type == "ncnnfused") continue; if (layer->type != "Input") continue; ncnn::Input* input = (ncnn::Input*)layer; int w = input->w; int h = input->h; int c = input->c; int dims = 0; if (w == 0 && h == 0 && c == 0) dims = 0; if (w != 0 && h == 0 && c == 0) dims = 1; if (w != 0 && h != 0 && c == 0) dims = 2; if (w != 0 && h != 0 && c != 0) dims = 3; if (dims == 0) { fprintf(stderr, "Input layer %s without shape info, estimate_memory_footprint skipped\n", layer->name.c_str()); return -1; } ncnn::Mat m; if (dims == 1) m.create(w, 4u, &allocator); if (dims == 2) m.create(w, h, 4u, &allocator); if (dims == 3) m.create(w, h, c, 4u, &allocator); ex.input(layer->tops[0], m); fprintf(stderr, "input = %s\n", blobs[layer->tops[0]].name.c_str()); } // find output blobs and do inference std::vector outputs; for (size_t i = 0; i < blob_count; i++) { const ncnn::Blob& blob = blobs[i]; if (blob.producer == -1 || blob.consumer != -1) continue; if (layers[blob.producer]->type == "ncnnfused") continue; // treat blob without any consumers as output ncnn::Mat m; ex.extract(int(i), m); outputs.push_back(m); fprintf(stderr, "extract = %s\n", blob.name.c_str()); } fprintf(stderr, "estimated memory footprint = %.2f KB = %.2f MB\n", allocator.memory_footprint / 1024.f, allocator.memory_footprint / 1024.f / 1024.f); return 0; } int ModelWriter::fprintf_param_int_array(int id, const ncnn::Mat& m, FILE* pp) { const int count = m.w; const int* ptr = m; fprintf(pp, " -%d=%d", 23300 + id, count); for (int i = 0; i < count; i++) { fprintf(pp, ",%d", ptr[i]); } return 0; } int ModelWriter::fprintf_param_float_array(int id, const ncnn::Mat& m, FILE* pp) { const int count = m.w; const float* ptr = m; fprintf(pp, " -%d=%d", 23300 + id, count); for (int i = 0; i < count; i++) { fprintf(pp, ",%e", ptr[i]); } return 0; } static inline size_t alignSize(size_t sz, int n) { return (sz + n - 1) & -n; } static void replace_denormals_with_zero(float* data, size_t data_length) { const int total = static_cast(data_length); for (size_t i = 0; i < data_length; ++i) { float value = data[i]; if (fabsf(value) < 1e-30 && fabsf(value) != 0.f) { data[i] = 0.f; } } } static float RandomFloat(float a = -1.2f, float b = 1.2f) { float random = ((float)RAND()) / (float)uint64_t(-1); //RAND_MAX; float diff = b - a; float r = random * diff; return a + r; } static void Randomize(ncnn::Mat& m, float a = -1.2f, float b = 1.2f) { if (m.elemsize == 4) { for (size_t i = 0; i < m.total(); i++) { m[i] = RandomFloat(a, b); } } else if (m.elemsize == 2) { unsigned short* p = m; for (size_t i = 0; i < m.total(); i++) { p[i] = ncnn::float32_to_float16(RandomFloat(a, b)); } } else if (m.elemsize == 1) { signed char* p = m; for (size_t i = 0; i < m.total(); i++) { p[i] = (signed char)RandomFloat(-127, 127); } } } int ModelWriter::fwrite_weight_tag_data(const ncnn::Mat& data, FILE* bp, float a, float b) { int p0 = ftell(bp); ncnn::Mat data_flattened = data.reshape(data.w * data.h * data.c); if (gen_random_weight) Randomize(data_flattened, a, b); if (data_flattened.elemsize == 4) { if (storage_type == 1) { const int tag = 0x01306B47; // fp16 magic fwrite(&tag, sizeof(int), 1, bp); ncnn::Mat data_flattened_fp16; ncnn::cast_float32_to_float16(data_flattened, data_flattened_fp16); fwrite(data_flattened_fp16.data, data_flattened_fp16.elemsize, data_flattened_fp16.w, bp); } else { const int tag = 0; // fp32 magic fwrite(&tag, sizeof(int), 1, bp); replace_denormals_with_zero(data_flattened, data_flattened.w); fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); } } else if (data_flattened.elemsize == 2) { const int tag = 0x01306B47; // fp16 magic fwrite(&tag, sizeof(int), 1, bp); fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); } else if (data_flattened.elemsize == 1) { const int tag = 0x000D4B38; // int8 magic fwrite(&tag, sizeof(int), 1, bp); fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); } else { fprintf(stderr, "unknown weight data type %d\n", (int)data_flattened.elemsize); } // padding to 32bit align int nwrite = ftell(bp) - p0; size_t nalign = alignSize(nwrite, 4); unsigned char padding[4] = {0x00, 0x00, 0x00, 0x00}; fwrite(padding, sizeof(unsigned char), nalign - nwrite, bp); return 0; } int ModelWriter::fwrite_weight_data(const ncnn::Mat& data, FILE* bp, float a, float b) { int p0 = ftell(bp); ncnn::Mat data_flattened = data.reshape(data.w * data.h * data.c); if (gen_random_weight) Randomize(data_flattened, a, b); if (data_flattened.elemsize == 4) // fp32 { replace_denormals_with_zero(data_flattened, data_flattened.w); } fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp); // padding to 32bit align int nwrite = ftell(bp) - p0; size_t nalign = alignSize(nwrite, 4); unsigned char padding[4] = {0x00, 0x00, 0x00, 0x00}; fwrite(padding, sizeof(unsigned char), nalign - nwrite, bp); return 0; } int ModelWriter::save(const char* parampath, const char* binpath) { uint64_t mac = 0; FILE* pp = fopen(parampath, "wb"); FILE* bp = fopen(binpath, "wb"); fprintf(pp, "7767517\n"); const size_t layer_count = layers.size(); int layer_count_fused = 0; std::set blob_names; for (size_t i = 0; i < layer_count; i++) { const ncnn::Layer* layer = layers[i]; if (layer->type == "ncnnfused") continue; layer_count_fused++; size_t bottom_count = layer->bottoms.size(); for (size_t j = 0; j < bottom_count; j++) { int bottom_blob_index = layer->bottoms[j]; blob_names.insert(blobs[bottom_blob_index].name); } size_t top_count = layer->tops.size(); for (size_t j = 0; j < top_count; j++) { int top_blob_index = layer->tops[j]; blob_names.insert(blobs[top_blob_index].name); } } size_t blob_count_fused = blob_names.size(); fprintf(pp, "%d %zd\n", layer_count_fused, blob_count_fused); for (size_t i = 0; i < layer_count; i++) { const ncnn::Layer* layer = layers[i]; if (layer->type == "ncnnfused") continue; if (cutstart > 0 && i < cutstart) continue; if (cutend > 0 && i > cutend) continue; size_t bottom_count = layer->bottoms.size(); size_t top_count = layer->tops.size(); fprintf(pp, "%-24s %-24s %zd %zd", layer->type.c_str(), layer->name.c_str(), bottom_count, top_count); for (size_t j = 0; j < bottom_count; j++) { int bottom_blob_index = layer->bottoms[j]; fprintf(pp, " %s", blobs[bottom_blob_index].name.c_str()); } for (size_t j = 0; j < top_count; j++) { int top_blob_index = layer->tops[j]; fprintf(pp, " %s", blobs[top_blob_index].name.c_str()); } // write shape hints bool shape_ready = true; for (size_t j = 0; j < top_count; j++) { int top_blob_index = layer->tops[j]; int dims = blobs[top_blob_index].shape.dims; if (dims == 0) { shape_ready = false; break; } } if (shape_ready) { fprintf(pp, " -23330=%zd", top_count * 4); for (size_t j = 0; j < top_count; j++) { int top_blob_index = layer->tops[j]; int dims = blobs[top_blob_index].shape.dims; int w = blobs[top_blob_index].shape.w; int h = blobs[top_blob_index].shape.h; int c = blobs[top_blob_index].shape.c; fprintf(pp, ",%d,%d,%d,%d", dims, w, h, c); } } // custom op if (layer->typeindex & ncnn::LayerType::CustomBit) { ((CustomLayer*)layer)->write_param(pp); fprintf(pp, "\n"); continue; } ncnn::Layer* layer_default = ncnn::create_layer(layer->typeindex); ncnn::ParamDict pd; layer_default->load_param(pd); #define fprintf_param_value(format, phase) \ { \ if (op->phase != op_default->phase) fprintf(pp, format, op->phase); \ } if (layer->type == "BatchNorm") { ncnn::BatchNorm* op = (ncnn::BatchNorm*)layer; ncnn::BatchNorm* op_default = (ncnn::BatchNorm*)layer_default; fprintf_param_value(" 0=%d", channels) fprintf_param_value(" 1=%e", eps) fwrite_weight_data(op->slope_data, bp); fwrite_weight_data(op->mean_data, bp); fwrite_weight_data(op->var_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "Bias") { ncnn::Bias* op = (ncnn::Bias*)layer; ncnn::Bias* op_default = (ncnn::Bias*)layer_default; fprintf_param_value(" 0=%d", bias_data_size) fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "BinaryOp") { ncnn::BinaryOp* op = (ncnn::BinaryOp*)layer; ncnn::BinaryOp* op_default = (ncnn::BinaryOp*)layer_default; fprintf_param_value(" 0=%d", op_type) fprintf_param_value(" 1=%d", with_scalar) fprintf_param_value(" 2=%e", b) } else if (layer->type == "Clip") { ncnn::Clip* op = (ncnn::Clip*)layer; ncnn::Clip* op_default = (ncnn::Clip*)layer_default; fprintf_param_value(" 0=%e", min) fprintf_param_value(" 1=%e", max) } else if (layer->type == "Concat") { ncnn::Concat* op = (ncnn::Concat*)layer; ncnn::Concat* op_default = (ncnn::Concat*)layer_default; fprintf_param_value(" 0=%d", axis) } else if (layer->type == "Convolution") { ncnn::Convolution* op = (ncnn::Convolution*)layer; ncnn::Convolution* op_default = (ncnn::Convolution*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 18=%e", pad_value) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 8=%d", int8_scale_term) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); #if NCNN_INT8 // write int8_scale data if (op->int8_scale_term) { fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100); fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1); fwrite_weight_data(op->top_blob_int8_scales, bp, 0.001, 1); } #endif // NCNN_INT8 if (shape_ready) { int inc = blobs[layer->bottoms[0]].shape.c; int outw = blobs[layer->tops[0]].shape.w; int outh = blobs[layer->tops[0]].shape.h; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_h * op->kernel_w * outw * outh * outc * inc; } } else if (layer->type == "Convolution1D") { ncnn::Convolution1D* op = (ncnn::Convolution1D*)layer; ncnn::Convolution1D* op_default = (ncnn::Convolution1D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) fprintf_param_value(" 2=%d", dilation_w) fprintf_param_value(" 3=%d", stride_w) fprintf_param_value(" 4=%d", pad_left) { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } fprintf_param_value(" 18=%e", pad_value) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inh = blobs[layer->bottoms[0]].shape.h; int outw = blobs[layer->tops[0]].shape.w; int outh = blobs[layer->tops[0]].shape.h; mac += (uint64_t)op->kernel_w * outw * outh * inh; } } else if (layer->type == "Convolution3D") { ncnn::Convolution3D* op = (ncnn::Convolution3D*)layer; ncnn::Convolution3D* op_default = (ncnn::Convolution3D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } { if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); } fprintf_param_value(" 18=%e", pad_value) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inc = blobs[layer->bottoms[0]].shape.c; int outw = blobs[layer->tops[0]].shape.w; int outh = blobs[layer->tops[0]].shape.h; int outd = blobs[layer->tops[0]].shape.d; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * outw * outh * outd * outc * inc; } } else if (layer->type == "ConvolutionDepthWise") { ncnn::ConvolutionDepthWise* op = (ncnn::ConvolutionDepthWise*)layer; ncnn::ConvolutionDepthWise* op_default = (ncnn::ConvolutionDepthWise*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 18=%e", pad_value) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 8=%d", int8_scale_term) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); #if NCNN_INT8 // write int8_scale data if (op->int8_scale_term == 1 || op->int8_scale_term == 101) { op->bottom_blob_int8_scales.w = 1; } if (op->int8_scale_term == 2 || op->int8_scale_term == 102) { op->weight_data_int8_scales.w = 1; op->bottom_blob_int8_scales.w = 1; } if (op->int8_scale_term > 100) { op->top_blob_int8_scales.w = 1; } if (op->int8_scale_term) { fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100); fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1); fwrite_weight_data(op->top_blob_int8_scales, bp, 0.001, 1); } #endif // NCNN_INT8 if (shape_ready) { int inc = blobs[layer->bottoms[0]].shape.c; int outw = blobs[layer->tops[0]].shape.w; int outh = blobs[layer->tops[0]].shape.h; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_h * op->kernel_w * outw * outh * (outc / op->group) * (inc / op->group) * op->group; } } else if (layer->type == "ConvolutionDepthWise1D") { ncnn::ConvolutionDepthWise1D* op = (ncnn::ConvolutionDepthWise1D*)layer; ncnn::ConvolutionDepthWise1D* op_default = (ncnn::ConvolutionDepthWise1D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) fprintf_param_value(" 2=%d", dilation_w) fprintf_param_value(" 3=%d", stride_w) fprintf_param_value(" 4=%d", pad_left) { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } fprintf_param_value(" 18=%e", pad_value) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inh = blobs[layer->bottoms[0]].shape.h; int outw = blobs[layer->tops[0]].shape.w; int outh = blobs[layer->tops[0]].shape.h; mac += (uint64_t)op->kernel_w * outw * (outh / op->group) * (inh / op->group) * op->group; } } else if (layer->type == "ConvolutionDepthWise3D") { ncnn::ConvolutionDepthWise3D* op = (ncnn::ConvolutionDepthWise3D*)layer; ncnn::ConvolutionDepthWise3D* op_default = (ncnn::ConvolutionDepthWise3D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } { if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); } fprintf_param_value(" 18=%e", pad_value) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inc = blobs[layer->bottoms[0]].shape.c; int outw = blobs[layer->tops[0]].shape.w; int outh = blobs[layer->tops[0]].shape.h; int outd = blobs[layer->tops[0]].shape.d; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * outw * outh * outd * (outc / op->group) * (inc / op->group) * op->group; } } else if (layer->type == "Crop") { ncnn::Crop* op = (ncnn::Crop*)layer; ncnn::Crop* op_default = (ncnn::Crop*)layer_default; fprintf_param_value(" 0=%d", woffset) fprintf_param_value(" 1=%d", hoffset) fprintf_param_value(" 2=%d", coffset) fprintf_param_value(" 3=%d", outw) fprintf_param_value(" 4=%d", outh) fprintf_param_value(" 5=%d", outc) fprintf_param_value(" 6=%d", woffset2) fprintf_param_value(" 7=%d", hoffset2) fprintf_param_value(" 8=%d", coffset2) { if (!op->starts.empty()) fprintf_param_int_array(9, op->starts, pp); } { if (!op->ends.empty()) fprintf_param_int_array(10, op->ends, pp); } { if (!op->axes.empty()) fprintf_param_int_array(11, op->axes, pp); } } else if (layer->type == "Deconvolution") { ncnn::Deconvolution* op = (ncnn::Deconvolution*)layer; ncnn::Deconvolution* op_default = (ncnn::Deconvolution*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 18=%d", output_pad_right) { if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); } fprintf_param_value(" 20=%d", output_w) { if (op->output_h != op->output_w) fprintf(pp, " 21=%d", op->output_h); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inw = blobs[layer->bottoms[0]].shape.w; int inh = blobs[layer->bottoms[0]].shape.h; int inc = blobs[layer->bottoms[0]].shape.c; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_h * op->kernel_w * inw * inh * outc * inc; } } else if (layer->type == "Deconvolution1D") { ncnn::Deconvolution1D* op = (ncnn::Deconvolution1D*)layer; ncnn::Deconvolution1D* op_default = (ncnn::Deconvolution1D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) fprintf_param_value(" 2=%d", dilation_w) fprintf_param_value(" 3=%d", stride_w) fprintf_param_value(" 4=%d", pad_left) { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } fprintf_param_value(" 18=%d", output_pad_right) fprintf_param_value(" 20=%d", output_w) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inw = blobs[layer->bottoms[0]].shape.w; int inh = blobs[layer->bottoms[0]].shape.h; int outh = blobs[layer->tops[0]].shape.h; mac += (uint64_t)op->kernel_w * inw * outh * inh; } } else if (layer->type == "Deconvolution3D") { ncnn::Deconvolution3D* op = (ncnn::Deconvolution3D*)layer; ncnn::Deconvolution3D* op_default = (ncnn::Deconvolution3D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } { if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); } fprintf_param_value(" 18=%d", output_pad_right) { if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); if (op->output_pad_behind != op->output_pad_right) fprintf(pp, " 20=%d", op->output_pad_behind); } fprintf_param_value(" 25=%d", output_w) { if (op->output_h != op->output_w) fprintf(pp, " 26=%d", op->output_h); if (op->output_d != op->output_w) fprintf(pp, " 27=%d", op->output_d); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inw = blobs[layer->bottoms[0]].shape.w; int inh = blobs[layer->bottoms[0]].shape.h; int ind = blobs[layer->bottoms[0]].shape.d; int inc = blobs[layer->bottoms[0]].shape.c; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * inw * inh * ind * outc * inc; } } else if (layer->type == "DeconvolutionDepthWise") { ncnn::DeconvolutionDepthWise* op = (ncnn::DeconvolutionDepthWise*)layer; ncnn::DeconvolutionDepthWise* op_default = (ncnn::DeconvolutionDepthWise*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } fprintf_param_value(" 18=%d", output_pad_right) { if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); } fprintf_param_value(" 20=%d", output_w) { if (op->output_h != op->output_w) fprintf(pp, " 21=%d", op->output_h); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inw = blobs[layer->bottoms[0]].shape.w; int inh = blobs[layer->bottoms[0]].shape.h; int inc = blobs[layer->bottoms[0]].shape.c; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_h * op->kernel_w * inw * inh * (outc / op->group) * (inc / op->group) * op->group; } } else if (layer->type == "DeconvolutionDepthWise1D") { ncnn::DeconvolutionDepthWise1D* op = (ncnn::DeconvolutionDepthWise1D*)layer; ncnn::DeconvolutionDepthWise1D* op_default = (ncnn::DeconvolutionDepthWise1D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) fprintf_param_value(" 2=%d", dilation_w) fprintf_param_value(" 3=%d", stride_w) fprintf_param_value(" 4=%d", pad_left) { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } fprintf_param_value(" 18=%d", output_pad_right) fprintf_param_value(" 20=%d", output_w) fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inw = blobs[layer->bottoms[0]].shape.w; int inh = blobs[layer->bottoms[0]].shape.h; int outh = blobs[layer->tops[0]].shape.h; mac += (uint64_t)op->kernel_w * inw * (outh / op->group) * (inh / op->group) * op->group; } } else if (layer->type == "DeconvolutionDepthWise3D") { ncnn::DeconvolutionDepthWise3D* op = (ncnn::DeconvolutionDepthWise3D*)layer; ncnn::DeconvolutionDepthWise3D* op_default = (ncnn::DeconvolutionDepthWise3D*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); } fprintf_param_value(" 2=%d", dilation_w) { if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h); if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d); } fprintf_param_value(" 3=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h); if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d); } fprintf_param_value(" 4=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top); if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front); } { if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom); } { if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind); } fprintf_param_value(" 18=%d", output_pad_right) { if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom); if (op->output_pad_behind != op->output_pad_right) fprintf(pp, " 20=%d", op->output_pad_behind); } fprintf_param_value(" 25=%d", output_w) { if (op->output_h != op->output_w) fprintf(pp, " 26=%d", op->output_h); if (op->output_d != op->output_w) fprintf(pp, " 27=%d", op->output_d); } fprintf_param_value(" 5=%d", bias_term) fprintf_param_value(" 6=%d", weight_data_size) fprintf_param_value(" 7=%d", group) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); if (shape_ready) { int inw = blobs[layer->bottoms[0]].shape.w; int inh = blobs[layer->bottoms[0]].shape.h; int ind = blobs[layer->bottoms[0]].shape.d; int inc = blobs[layer->bottoms[0]].shape.c; int outc = blobs[layer->tops[0]].shape.c; mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * inw * inh * ind * (outc / op->group) * (inc / op->group) * op->group; } } else if (layer->type == "DetectionOutput") { ncnn::DetectionOutput* op = (ncnn::DetectionOutput*)layer; ncnn::DetectionOutput* op_default = (ncnn::DetectionOutput*)layer_default; fprintf_param_value(" 0=%d", num_class) fprintf_param_value(" 1=%e", nms_threshold) fprintf_param_value(" 2=%d", nms_top_k) fprintf_param_value(" 3=%d", keep_top_k) fprintf_param_value(" 4=%e", confidence_threshold) fprintf_param_value(" 5=%e", variances[0]) fprintf_param_value(" 6=%e", variances[1]) fprintf_param_value(" 7=%e", variances[2]) fprintf_param_value(" 8=%e", variances[3]) } else if (layer->type == "Dropout") { ncnn::Dropout* op = (ncnn::Dropout*)layer; ncnn::Dropout* op_default = (ncnn::Dropout*)layer_default; fprintf_param_value(" 0=%e", scale) } else if (layer->type == "Eltwise") { ncnn::Eltwise* op = (ncnn::Eltwise*)layer; ncnn::Eltwise* op_default = (ncnn::Eltwise*)layer_default; fprintf_param_value(" 0=%d", op_type) { if (!op->coeffs.empty()) fprintf_param_float_array(1, op->coeffs, pp); } } else if (layer->type == "ELU") { ncnn::ELU* op = (ncnn::ELU*)layer; ncnn::ELU* op_default = (ncnn::ELU*)layer_default; fprintf_param_value(" 0=%e", alpha) } else if (layer->type == "Embed") { ncnn::Embed* op = (ncnn::Embed*)layer; ncnn::Embed* op_default = (ncnn::Embed*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", input_dim) fprintf_param_value(" 2=%d", bias_term) fprintf_param_value(" 3=%d", weight_data_size) fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "Exp") { ncnn::Exp* op = (ncnn::Exp*)layer; ncnn::Exp* op_default = (ncnn::Exp*)layer_default; fprintf_param_value(" 0=%e", base) fprintf_param_value(" 1=%e", scale) fprintf_param_value(" 2=%e", shift) } else if (layer->type == "ExpandDims") { ncnn::ExpandDims* op = (ncnn::ExpandDims*)layer; ncnn::ExpandDims* op_default = (ncnn::ExpandDims*)layer_default; fprintf_param_value(" 0=%d", expand_w) fprintf_param_value(" 1=%d", expand_h) fprintf_param_value(" 2=%d", expand_c) { if (!op->axes.empty()) fprintf_param_int_array(0, op->axes, pp); } } else if (layer->type == "GELU") { ncnn::GELU* op = (ncnn::GELU*)layer; ncnn::GELU* op_default = (ncnn::GELU*)layer_default; fprintf_param_value(" 0=%d", fast_gelu) } else if (layer->type == "Gemm") { ncnn::Gemm* op = (ncnn::Gemm*)layer; ncnn::Gemm* op_default = (ncnn::Gemm*)layer_default; fprintf_param_value(" 0=%e", alpha) fprintf_param_value(" 1=%e", beta) fprintf_param_value(" 2=%d", transA) fprintf_param_value(" 3=%d", transB) } else if (layer->type == "GroupNorm") { ncnn::GroupNorm* op = (ncnn::GroupNorm*)layer; ncnn::GroupNorm* op_default = (ncnn::GroupNorm*)layer_default; fprintf_param_value(" 0=%d", group) fprintf_param_value(" 1=%d", channels) fprintf_param_value(" 2=%e", eps) fprintf_param_value(" 3=%d", affine) fwrite_weight_data(op->gamma_data, bp); fwrite_weight_data(op->beta_data, bp); } else if (layer->type == "GRU") { ncnn::GRU* op = (ncnn::GRU*)layer; ncnn::GRU* op_default = (ncnn::GRU*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", weight_data_size) fprintf_param_value(" 2=%d", direction) fwrite_weight_tag_data(op->weight_xc_data, bp); fwrite_weight_tag_data(op->bias_c_data, bp); fwrite_weight_tag_data(op->weight_hc_data, bp); } else if (layer->type == "HardSigmoid") { ncnn::HardSigmoid* op = (ncnn::HardSigmoid*)layer; ncnn::HardSigmoid* op_default = (ncnn::HardSigmoid*)layer_default; fprintf_param_value(" 0=%e", alpha) fprintf_param_value(" 1=%e", beta) } else if (layer->type == "HardSwish") { ncnn::HardSwish* op = (ncnn::HardSwish*)layer; ncnn::HardSwish* op_default = (ncnn::HardSwish*)layer_default; fprintf_param_value(" 0=%e", alpha) fprintf_param_value(" 1=%e", beta) } else if (layer->type == "InnerProduct") { ncnn::InnerProduct* op = (ncnn::InnerProduct*)layer; ncnn::InnerProduct* op_default = (ncnn::InnerProduct*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", bias_term) fprintf_param_value(" 2=%d", weight_data_size) fprintf_param_value(" 8=%d", int8_scale_term) fprintf_param_value(" 9=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp); } fwrite_weight_tag_data(op->weight_data, bp); fwrite_weight_data(op->bias_data, bp); #if NCNN_INT8 // write int8_scale data if (op->int8_scale_term) { fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100); fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1); } #endif // NCNN_INT8 if (shape_ready) { int inw = blobs[layer->bottoms[0]].shape.w; int inh = blobs[layer->bottoms[0]].shape.h; int inc = blobs[layer->bottoms[0]].shape.c; int outw = blobs[layer->tops[0]].shape.w; mac += (uint64_t)inw * inh * inc * outw; } } else if (layer->type == "Input") { ncnn::Input* op = (ncnn::Input*)layer; ncnn::Input* op_default = (ncnn::Input*)layer_default; fprintf_param_value(" 0=%d", w) fprintf_param_value(" 1=%d", h) fprintf_param_value(" 2=%d", c) } else if (layer->type == "InstanceNorm") { ncnn::InstanceNorm* op = (ncnn::InstanceNorm*)layer; ncnn::InstanceNorm* op_default = (ncnn::InstanceNorm*)layer_default; fprintf_param_value(" 0=%d", channels) fprintf_param_value(" 1=%e", eps) fprintf_param_value(" 2=%d", affine) fwrite_weight_data(op->gamma_data, bp); fwrite_weight_data(op->beta_data, bp); } else if (layer->type == "Interp") { ncnn::Interp* op = (ncnn::Interp*)layer; ncnn::Interp* op_default = (ncnn::Interp*)layer_default; fprintf_param_value(" 0=%d", resize_type) fprintf_param_value(" 1=%e", height_scale) fprintf_param_value(" 2=%e", width_scale) fprintf_param_value(" 3=%d", output_height) fprintf_param_value(" 4=%d", output_width) fprintf_param_value(" 5=%d", dynamic_target_size) fprintf_param_value(" 6=%d", align_corner) } else if (layer->type == "LayerNorm") { ncnn::LayerNorm* op = (ncnn::LayerNorm*)layer; ncnn::LayerNorm* op_default = (ncnn::LayerNorm*)layer_default; fprintf_param_value(" 0=%d", affine_size) fprintf_param_value(" 1=%e", eps) fprintf_param_value(" 2=%d", affine) fwrite_weight_data(op->gamma_data, bp); fwrite_weight_data(op->beta_data, bp); } else if (layer->type == "Log") { ncnn::Log* op = (ncnn::Log*)layer; ncnn::Log* op_default = (ncnn::Log*)layer_default; fprintf_param_value(" 0=%e", base) fprintf_param_value(" 1=%e", scale) fprintf_param_value(" 2=%e", shift) } else if (layer->type == "LRN") { ncnn::LRN* op = (ncnn::LRN*)layer; ncnn::LRN* op_default = (ncnn::LRN*)layer_default; fprintf_param_value(" 0=%d", region_type) fprintf_param_value(" 1=%d", local_size) fprintf_param_value(" 2=%e", alpha) fprintf_param_value(" 3=%e", beta) fprintf_param_value(" 4=%e", bias) } else if (layer->type == "LSTM") { ncnn::LSTM* op = (ncnn::LSTM*)layer; ncnn::LSTM* op_default = (ncnn::LSTM*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", weight_data_size) fprintf_param_value(" 2=%d", direction) fwrite_weight_tag_data(op->weight_xc_data, bp); fwrite_weight_tag_data(op->bias_c_data, bp); fwrite_weight_tag_data(op->weight_hc_data, bp); } else if (layer->type == "MatMul") { ncnn::MatMul* op = (ncnn::MatMul*)layer; ncnn::MatMul* op_default = (ncnn::MatMul*)layer_default; fprintf_param_value(" 0=%d", transB) } else if (layer->type == "MemoryData") { ncnn::MemoryData* op = (ncnn::MemoryData*)layer; ncnn::MemoryData* op_default = (ncnn::MemoryData*)layer_default; fprintf_param_value(" 0=%d", w) fprintf_param_value(" 1=%d", h) fprintf_param_value(" 2=%d", c) fwrite_weight_data(op->data, bp); } else if (layer->type == "MultiHeadAttention") { ncnn::MultiHeadAttention* op = (ncnn::MultiHeadAttention*)layer; ncnn::MultiHeadAttention* op_default = (ncnn::MultiHeadAttention*)layer_default; fprintf_param_value(" 0=%d", embed_dim) fprintf_param_value(" 1=%d", num_head) fprintf_param_value(" 2=%d", weight_data_size) fwrite_weight_tag_data(op->q_weight_data, bp); fwrite_weight_data(op->q_bias_data, bp); fwrite_weight_tag_data(op->k_weight_data, bp); fwrite_weight_data(op->k_bias_data, bp); fwrite_weight_tag_data(op->v_weight_data, bp); fwrite_weight_data(op->v_bias_data, bp); fwrite_weight_tag_data(op->out_weight_data, bp); fwrite_weight_data(op->out_bias_data, bp); } else if (layer->type == "MVN") { ncnn::MVN* op = (ncnn::MVN*)layer; ncnn::MVN* op_default = (ncnn::MVN*)layer_default; fprintf_param_value(" 0=%d", normalize_variance) fprintf_param_value(" 1=%d", across_channels) fprintf_param_value(" 2=%e", eps) } else if (layer->type == "Normalize") { ncnn::Normalize* op = (ncnn::Normalize*)layer; ncnn::Normalize* op_default = (ncnn::Normalize*)layer_default; fprintf_param_value(" 0=%d", across_spatial) fprintf_param_value(" 1=%d", channel_shared) fprintf_param_value(" 2=%e", eps) fprintf_param_value(" 3=%d", scale_data_size) fprintf_param_value(" 4=%d", across_channel) fprintf_param_value(" 9=%d", eps_mode) fwrite_weight_data(op->scale_data, bp); } else if (layer->type == "Padding") { ncnn::Padding* op = (ncnn::Padding*)layer; ncnn::Padding* op_default = (ncnn::Padding*)layer_default; fprintf_param_value(" 0=%d", top) fprintf_param_value(" 1=%d", bottom) fprintf_param_value(" 2=%d", left) fprintf_param_value(" 3=%d", right) fprintf_param_value(" 4=%d", type) fprintf_param_value(" 5=%e", value) fprintf_param_value(" 6=%d", per_channel_pad_data_size) fprintf_param_value(" 7=%d", front) fprintf_param_value(" 8=%d", behind) fwrite_weight_data(op->per_channel_pad_data, bp); } else if (layer->type == "Permute") { ncnn::Permute* op = (ncnn::Permute*)layer; ncnn::Permute* op_default = (ncnn::Permute*)layer_default; fprintf_param_value(" 0=%d", order_type) } else if (layer->type == "PixelShuffle") { ncnn::PixelShuffle* op = (ncnn::PixelShuffle*)layer; ncnn::PixelShuffle* op_default = (ncnn::PixelShuffle*)layer_default; fprintf_param_value(" 0=%d", upscale_factor) fprintf_param_value(" 1=%d", mode) } else if (layer->type == "Pooling") { ncnn::Pooling* op = (ncnn::Pooling*)layer; ncnn::Pooling* op_default = (ncnn::Pooling*)layer_default; fprintf_param_value(" 0=%d", pooling_type) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); } fprintf_param_value(" 2=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 12=%d", op->stride_h); } fprintf_param_value(" 3=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 13=%d", op->pad_top); } { if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 15=%d", op->pad_bottom); } fprintf_param_value(" 4=%d", global_pooling) fprintf_param_value(" 5=%d", pad_mode) fprintf_param_value(" 6=%d", avgpool_count_include_pad) fprintf_param_value(" 7=%d", adaptive_pooling) fprintf_param_value(" 8=%d", out_w) { if (op->out_h != op->out_w) fprintf(pp, " 18=%d", op->out_h); } } else if (layer->type == "Pooling1D") { ncnn::Pooling1D* op = (ncnn::Pooling1D*)layer; ncnn::Pooling1D* op_default = (ncnn::Pooling1D*)layer_default; fprintf_param_value(" 0=%d", pooling_type) fprintf_param_value(" 1=%d", kernel_w) fprintf_param_value(" 2=%d", stride_w) fprintf_param_value(" 3=%d", pad_left) { if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right); } fprintf_param_value(" 4=%d", global_pooling) fprintf_param_value(" 5=%d", pad_mode) fprintf_param_value(" 6=%d", avgpool_count_include_pad) fprintf_param_value(" 7=%d", adaptive_pooling) fprintf_param_value(" 8=%d", out_w) } else if (layer->type == "Pooling3D") { ncnn::Pooling3D* op = (ncnn::Pooling3D*)layer; ncnn::Pooling3D* op_default = (ncnn::Pooling3D*)layer_default; fprintf_param_value(" 0=%d", pooling_type) fprintf_param_value(" 1=%d", kernel_w) { if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h); if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d); } fprintf_param_value(" 2=%d", stride_w) { if (op->stride_h != op->stride_w) fprintf(pp, " 12=%d", op->stride_h); if (op->stride_d != op->stride_w) fprintf(pp, " 22=%d", op->stride_d); } fprintf_param_value(" 3=%d", pad_left) { if (op->pad_top != op->pad_left) fprintf(pp, " 13=%d", op->pad_top); if (op->pad_front != op->pad_left) fprintf(pp, " 23=%d", op->pad_front); } { if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right); } { if (op->pad_bottom != op->pad_top) fprintf(pp, " 15=%d", op->pad_bottom); } { if (op->pad_behind != op->pad_front) fprintf(pp, " 16=%d", op->pad_behind); } fprintf_param_value(" 4=%d", global_pooling) fprintf_param_value(" 5=%d", pad_mode) fprintf_param_value(" 6=%d", avgpool_count_include_pad) fprintf_param_value(" 7=%d", adaptive_pooling) fprintf_param_value(" 8=%d", out_w) { if (op->out_h != op->out_w) fprintf(pp, " 18=%d", op->out_h); if (op->out_d != op->out_w) fprintf(pp, " 28=%d", op->out_d); } } else if (layer->type == "Power") { ncnn::Power* op = (ncnn::Power*)layer; ncnn::Power* op_default = (ncnn::Power*)layer_default; fprintf_param_value(" 0=%e", power) fprintf_param_value(" 1=%e", scale) fprintf_param_value(" 2=%e", shift) } else if (layer->type == "PReLU") { ncnn::PReLU* op = (ncnn::PReLU*)layer; ncnn::PReLU* op_default = (ncnn::PReLU*)layer_default; fprintf_param_value(" 0=%d", num_slope) fwrite_weight_data(op->slope_data, bp); } else if (layer->type == "PriorBox") { ncnn::PriorBox* op = (ncnn::PriorBox*)layer; ncnn::PriorBox* op_default = (ncnn::PriorBox*)layer_default; { if (!op->min_sizes.empty()) fprintf_param_float_array(0, op->min_sizes, pp); } { if (!op->max_sizes.empty()) fprintf_param_float_array(1, op->max_sizes, pp); } { if (!op->aspect_ratios.empty()) fprintf_param_float_array(2, op->aspect_ratios, pp); } fprintf_param_value(" 3=%e", variances[0]) fprintf_param_value(" 4=%e", variances[1]) fprintf_param_value(" 5=%e", variances[2]) fprintf_param_value(" 6=%e", variances[3]) fprintf_param_value(" 7=%d", flip) fprintf_param_value(" 8=%d", clip) fprintf_param_value(" 9=%d", image_width) fprintf_param_value(" 10=%d", image_height) fprintf_param_value(" 11=%e", step_width) fprintf_param_value(" 12=%e", step_height) fprintf_param_value(" 13=%e", offset) } else if (layer->type == "Proposal") { ncnn::Proposal* op = (ncnn::Proposal*)layer; ncnn::Proposal* op_default = (ncnn::Proposal*)layer_default; fprintf_param_value(" 0=%d", feat_stride) fprintf_param_value(" 1=%d", base_size) fprintf_param_value(" 2=%d", pre_nms_topN) fprintf_param_value(" 3=%d", after_nms_topN) fprintf_param_value(" 4=%e", nms_thresh) fprintf_param_value(" 5=%d", min_size) } else if (layer->type == "PSROIPooling") { ncnn::PSROIPooling* op = (ncnn::PSROIPooling*)layer; ncnn::PSROIPooling* op_default = (ncnn::PSROIPooling*)layer_default; fprintf_param_value(" 0=%d", pooled_width) fprintf_param_value(" 1=%d", pooled_height) fprintf_param_value(" 2=%e", spatial_scale) fprintf_param_value(" 3=%d", output_dim) } else if (layer->type == "Quantize") { ncnn::Quantize* op = (ncnn::Quantize*)layer; ncnn::Quantize* op_default = (ncnn::Quantize*)layer_default; fprintf_param_value(" 0=%d", scale_data_size) fwrite_weight_data(op->scale_data, bp); } else if (layer->type == "Reduction") { ncnn::Reduction* op = (ncnn::Reduction*)layer; ncnn::Reduction* op_default = (ncnn::Reduction*)layer_default; fprintf_param_value(" 0=%d", operation) fprintf_param_value(" 1=%d", reduce_all) fprintf_param_value(" 2=%e", coeff) { if (!op->axes.empty()) fprintf_param_int_array(3, op->axes, pp); } fprintf_param_value(" 4=%d", keepdims) // HACK if (!op->axes.empty()) { int fixbug0 = 1; fprintf(pp, " 5=%d", fixbug0); } } else if (layer->type == "ReLU") { ncnn::ReLU* op = (ncnn::ReLU*)layer; ncnn::ReLU* op_default = (ncnn::ReLU*)layer_default; fprintf_param_value(" 0=%e", slope) } else if (layer->type == "Reorg") { ncnn::Reorg* op = (ncnn::Reorg*)layer; ncnn::Reorg* op_default = (ncnn::Reorg*)layer_default; fprintf_param_value(" 0=%d", stride) fprintf_param_value(" 1=%d", mode) } else if (layer->type == "Requantize") { ncnn::Requantize* op = (ncnn::Requantize*)layer; ncnn::Requantize* op_default = (ncnn::Requantize*)layer_default; fprintf_param_value(" 0=%d", scale_in_data_size) fprintf_param_value(" 1=%d", scale_out_data_size) fprintf_param_value(" 2=%d", bias_data_size) fprintf_param_value(" 3=%d", activation_type) { if (!op->activation_params.empty()) fprintf_param_float_array(4, op->activation_params, pp); } fwrite_weight_data(op->scale_in_data, bp); fwrite_weight_data(op->scale_out_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "Reshape") { ncnn::Reshape* op = (ncnn::Reshape*)layer; ncnn::Reshape* op_default = (ncnn::Reshape*)layer_default; fprintf_param_value(" 0=%d", w) fprintf_param_value(" 1=%d", h) fprintf_param_value(" 2=%d", c) fprintf_param_value(" 3=%d", permute) } else if (layer->type == "RNN") { ncnn::RNN* op = (ncnn::RNN*)layer; ncnn::RNN* op_default = (ncnn::RNN*)layer_default; fprintf_param_value(" 0=%d", num_output) fprintf_param_value(" 1=%d", weight_data_size) fprintf_param_value(" 2=%d", direction) fwrite_weight_tag_data(op->weight_xc_data, bp); fwrite_weight_tag_data(op->bias_c_data, bp); fwrite_weight_tag_data(op->weight_hc_data, bp); } else if (layer->type == "ROIAlign") { ncnn::ROIAlign* op = (ncnn::ROIAlign*)layer; ncnn::ROIAlign* op_default = (ncnn::ROIAlign*)layer_default; fprintf_param_value(" 0=%d", pooled_width) fprintf_param_value(" 1=%d", pooled_height) fprintf_param_value(" 2=%e", spatial_scale) fprintf_param_value(" 3=%d", sampling_ratio) fprintf_param_value(" 4=%d", aligned) fprintf_param_value(" 5=%d", version) } else if (layer->type == "ROIPooling") { ncnn::ROIPooling* op = (ncnn::ROIPooling*)layer; ncnn::ROIPooling* op_default = (ncnn::ROIPooling*)layer_default; fprintf_param_value(" 0=%d", pooled_width) fprintf_param_value(" 1=%d", pooled_height) fprintf_param_value(" 2=%e", spatial_scale) } else if (layer->type == "Scale") { ncnn::Scale* op = (ncnn::Scale*)layer; ncnn::Scale* op_default = (ncnn::Scale*)layer_default; fprintf_param_value(" 0=%d", scale_data_size) fprintf_param_value(" 1=%d", bias_term) fwrite_weight_data(op->scale_data, bp); fwrite_weight_data(op->bias_data, bp); } else if (layer->type == "ShuffleChannel") { ncnn::ShuffleChannel* op = (ncnn::ShuffleChannel*)layer; ncnn::ShuffleChannel* op_default = (ncnn::ShuffleChannel*)layer_default; fprintf_param_value(" 0=%d", group) fprintf_param_value(" 1=%d", reverse) } else if (layer->type == "Slice") { ncnn::Slice* op = (ncnn::Slice*)layer; ncnn::Slice* op_default = (ncnn::Slice*)layer_default; { if (!op->slices.empty()) fprintf_param_int_array(0, op->slices, pp); } fprintf_param_value(" 1=%d", axis) } else if (layer->type == "Softmax") { ncnn::Softmax* op = (ncnn::Softmax*)layer; ncnn::Softmax* op_default = (ncnn::Softmax*)layer_default; fprintf_param_value(" 0=%d", axis) // HACK if (op->axis != 0) { int fixbug0 = 1; fprintf(pp, " 1=%d", fixbug0); } } else if (layer->type == "Squeeze") { ncnn::Squeeze* op = (ncnn::Squeeze*)layer; ncnn::Squeeze* op_default = (ncnn::Squeeze*)layer_default; fprintf_param_value(" 0=%d", squeeze_w) fprintf_param_value(" 1=%d", squeeze_h) fprintf_param_value(" 2=%d", squeeze_c) { if (!op->axes.empty()) fprintf_param_int_array(0, op->axes, pp); } } else if (layer->type == "Threshold") { ncnn::Threshold* op = (ncnn::Threshold*)layer; ncnn::Threshold* op_default = (ncnn::Threshold*)layer_default; fprintf_param_value(" 0=%e", threshold) } else if (layer->type == "UnaryOp") { ncnn::UnaryOp* op = (ncnn::UnaryOp*)layer; ncnn::UnaryOp* op_default = (ncnn::UnaryOp*)layer_default; fprintf_param_value(" 0=%d", op_type) } else if (layer->type == "YoloDetectionOutput") { ncnn::YoloDetectionOutput* op = (ncnn::YoloDetectionOutput*)layer; ncnn::YoloDetectionOutput* op_default = (ncnn::YoloDetectionOutput*)layer_default; fprintf_param_value(" 0=%d", num_class) fprintf_param_value(" 1=%d", num_box) fprintf_param_value(" 2=%e", confidence_threshold) fprintf_param_value(" 3=%e", nms_threshold) { if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp); } } else if (layer->type == "Yolov3DetectionOutput") { ncnn::Yolov3DetectionOutput* op = (ncnn::Yolov3DetectionOutput*)layer; ncnn::Yolov3DetectionOutput* op_default = (ncnn::Yolov3DetectionOutput*)layer_default; fprintf_param_value(" 0=%d", num_class) fprintf_param_value(" 1=%d", num_box) fprintf_param_value(" 2=%e", confidence_threshold) fprintf_param_value(" 3=%e", nms_threshold) { if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp); } { if (!op->mask.empty()) fprintf_param_int_array(5, op->mask, pp); } { if (!op->anchors_scale.empty()) fprintf_param_float_array(6, op->anchors_scale, pp); } } #undef fprintf_param_value fprintf(pp, "\n"); delete layer_default; } fclose(pp); fclose(bp); if (mac) { fprintf(stderr, "mac = %llu = %.2f M\n", mac, mac / 1000000.0); } return 0; }