* [AbsVal](#absval) * [ArgMax](#argmax) * [BatchNorm](#batchnorm) * [Bias](#bias) * [BinaryOp](#binaryop) * [BNLL](#bnll) * [Cast](#cast) * [Clip](#clip) * [Concat](#concat) * [Convolution](#convolution) * [Convolution1D](#convolution1d) * [Convolution3D](#convolution3d) * [ConvolutionDepthWise](#convolutiondepthwise) * [ConvolutionDepthWise1D](#convolutiondepthwise1d) * [ConvolutionDepthWise3D](#convolutiondepthwise3d) * [Crop](#crop) * [Deconvolution](#deconvolution) * [Deconvolution1D](#deconvolution1d) * [Deconvolution3D](#deconvolution3d) * [DeconvolutionDepthWise](#deconvolutiondepthwise) * [DeconvolutionDepthWise1D](#deconvolutiondepthwise1d) * [DeconvolutionDepthWise3D](#deconvolutiondepthwise3d) * [Dequantize](#dequantize) * [Dropout](#dropout) * [Eltwise](#eltwise) * [ELU](#elu) * [Exp](#exp) * [Flatten](#flatten) * [GELU](#gelu) * [Gemm](#gemm) * [GroupNorm](#groupnorm) * [GRU](#gru) * [HardSigmoid](#hardsigmoid) * [HardSwish](#hardswish) * [InnerProduct](#innerproduct) * [Input](#input) * [InstanceNorm](#instancenorm) * [Interp](#interp) * [LayerNorm](#layernorm) * [Log](#log) * [LRN](#lrn) * [LSTM](#lstm) * [MemoryData](#memorydata) * [Mish](#mish) * [MultiHeadAttention](#multiheadattention) * [MVN](#mvn) * [Noop](#noop) * [Normalize](#normalize) * [Packing](#packing) * [Padding](#padding) * [Permute](#permute) * [PixelShuffle](#pixelshuffle) * [Pooling](#pooling) * [Pooling1D](#pooling1d) * [Pooling3D](#pooling3d) * [Power](#power) * [PReLU](#prelu) * [Quantize](#quantize) * [Reduction](#reduction) * [ReLU](#relu) * [Reorg](#reorg) * [Requantize](#requantize) * [Reshape](#reshape) * [RNN](#rnn) * [Scale](#scale) * [SELU](#selu) * [ShuffleChannel](#shufflechannel) * [Sigmoid](#sigmoid) * [Slice](#slice) * [Softmax](#softmax) * [Softplus](#softplus) * [Split](#split) * [Swish](#swish) * [TanH](#tanh) * [Threshold](#threshold) * [Tile](#tile) * [UnaryOp](#unaryop) # AbsVal ``` y = abs(x) ``` * one_blob_only * support_inplace # ArgMax ``` y = argmax(x, out_max_val, topk) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | out_max_val | int | 0 | | | 1 | topk | int | 1 | | # BatchNorm ``` y = (x - mean) / sqrt(var + eps) * slope + bias ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | channels | int | 0 | | | 1 | eps | float | 0.f | | | weight | type | shape | | ------------- | ----- | --------------------- | | slope_data | float | [channels] | | mean_data | float | [channels] | | var_data | float | [channels] | | bias_data | float | [channels] | # Bias ``` y = x + bias ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | bias_data_size| int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | bias_data | float | [channels] | # BinaryOp This operation is used for binary computation, and the calculation rule depends on the [broadcasting rule](https://github.com/Tencent/ncnn/wiki/binaryop-broadcasting). ``` C = binaryop(A, B) ``` if with_scalar = 1: - one_blob_only - support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | op_type | int | 0 | Operation type as follows | | 1 | with_scalar | int | 0 | with_scalar=0 B is a matrix, with_scalar=1 B is a scalar | | 2 | b | float | 0.f | When B is a scalar, B = b | Operation type: - 0 = ADD - 1 = SUB - 2 = MUL - 3 = DIV - 4 = MAX - 5 = MIN - 6 = POW - 7 = RSUB - 8 = RDIV # BNLL ``` y = log(1 + e^(-x)) , x > 0 y = log(1 + e^x), x < 0 ``` * one_blob_only * support_inplace # Cast ``` y = cast(x) ``` * one_blob_only * support_packing | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | type_from | int | 0 | | | 1 | type_to | int | 0 | | Element type: - 0 = auto - 1 = float32 - 2 = float16 - 3 = int8 - 4 = bfloat16 # Clip ``` y = clamp(x, min, max) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | min | float | -FLT_MAX | | | 1 | max | float | FLT_MAX | | # Concat ``` y = concat(x0, x1, x2, ...) by axis ``` | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | axis | int | 0 | | # Convolution ``` x2 = pad(x, pads, pad_value) x3 = conv(x2, weight, kernel, stride, dilation) + bias y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 8 | int8_scale_term| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 18 | pad_value | float | 0.f | | | 19 | dynamic_weight| int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] | | bias_data | float | [num_output] | | weight_data_int8_scales| float | [num_output] | | bottom_blob_int8_scales| float | [1] | | top_blob_int8_scales| float | [1] | # Convolution1D ``` x2 = pad(x, pads, pad_value) x3 = conv1d(x2, weight, kernel, stride, dilation) + bias y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 15 | pad_right | int | pad_left | | | 18 | pad_value | float | 0.f | | | 19 | dynamic_weight| int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16/int8 | [kernel_w, num_input, num_output] | | bias_data | float | [num_output] | # Convolution3D ``` x2 = pad(x, pads, pad_value) x3 = conv3d(x2, weight, kernel, stride, dilation) + bias y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 17 | pad_behind | int | pad_front | | | 18 | pad_value | float | 0.f | | | 21 | kernel_d | int | kernel_w | | | 22 | dilation_d | int | dilation_w | | | 23 | stride_d | int | stride_w | | | 24 | pad_front | int | pad_left | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input, num_output] | | bias_data | float | [num_output] | # ConvolutionDepthWise ``` x2 = pad(x, pads, pad_value) x3 = conv(x2, weight, kernel, stride, dilation, group) + bias y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 7 | group | int | 1 | | | 8 | int8_scale_term| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 18 | pad_value | float | 0.f | | | 19 | dynamic_weight| int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input / group, num_output / group, group] | | bias_data | float | [num_output] | | weight_data_int8_scales| float | [group] | | bottom_blob_int8_scales| float | [1] | | top_blob_int8_scales| float | [1] | # ConvolutionDepthWise1D ``` x2 = pad(x, pads, pad_value) x3 = conv1d(x2, weight, kernel, stride, dilation, group) + bias y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 7 | group | int | 1 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 15 | pad_right | int | pad_left | | | 18 | pad_value | float | 0.f | | | 19 | dynamic_weight| int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16/int8 | [kernel_w, num_input / group, num_output / group, group] | | bias_data | float | [num_output] | # ConvolutionDepthWise3D ``` x2 = pad(x, pads, pad_value) x3 = conv3d(x2, weight, kernel, stride, dilation, group) + bias y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 7 | group | int | 1 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 17 | pad_behind | int | pad_front | | | 18 | pad_value | float | 0.f | | | 21 | kernel_d | int | kernel_w | | | 22 | dilation_d | int | dilation_w | | | 23 | stride_d | int | stride_w | | | 24 | pad_front | int | pad_left | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] | | bias_data | float | [num_output] | # Crop ``` y = crop(x) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | woffset | int | 0 | | | 1 | hoffset | int | 0 | | | 2 | coffset | int | 1 | | | 3 | outw | int | 1 | | | 4 | outh | int | 0 | | | 5 | outc | int | 0 | | | 6 | woffset2 | int | 0 | | | 7 | hoffset2 | int | 1 | | | 8 | coffset2 | int | 0 | | | 9 | starts | array | [ ] | | | 10 | ends | array | [ ] | | | 11 | axes | array | [ ] | | # Deconvolution ``` x2 = deconv(x, weight, kernel, stride, dilation) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 18 | output_pad_right| int | 0 | | | 19 | output_pad_bottom| int | output_pad_right | | | 20 | output_w | int | 0 | | | 21 | output_h | int | output_w | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16 | [kernel_w, kernel_h, num_input, num_output] | | bias_data | float | [num_output] | # Deconvolution1D ``` x2 = deconv1d(x, weight, kernel, stride, dilation) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 15 | pad_right | int | pad_left | | | 18 | output_pad_right| int | 0 | | | 20 | output_w | int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16 | [kernel_w, num_input, num_output] | | bias_data | float | [num_output] | # Deconvolution3D ``` x2 = deconv3d(x, weight, kernel, stride, dilation) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 17 | pad_behind | int | pad_front | | | 18 | output_pad_right| int | 0 | | | 19 | output_pad_bottom| int | output_pad_right | | | 20 | output_pad_behind| int | output_pad_right | | | 21 | kernel_d | int | kernel_w | | | 22 | dilation_d | int | dilation_w | | | 23 | stride_d | int | stride_w | | | 24 | pad_front | int | pad_left | | | 25 | output_w | int | 0 | | | 26 | output_h | int | output_w | | | 27 | output_d | int | output_w | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input, num_output] | | bias_data | float | [num_output] | # DeconvolutionDepthWise ``` x2 = deconv(x, weight, kernel, stride, dilation, group) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 7 | group | int | 1 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 18 | output_pad_right| int | 0 | | | 19 | output_pad_bottom| int | output_pad_right | | | 20 | output_w | int | 0 | | | 21 | output_h | int | output_w | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16 | [kernel_w, kernel_h, num_input / group, num_output / group, group] | | bias_data | float | [num_output] | # DeconvolutionDepthWise1D ``` x2 = deconv1d(x, weight, kernel, stride, dilation, group) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 7 | group | int | 1 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 15 | pad_right | int | pad_left | | | 18 | output_pad_right| int | 0 | | | 20 | output_w | int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16 | [kernel_w, num_input / group, num_output / group, group] | | bias_data | float | [num_output] | # DeconvolutionDepthWise3D ``` x2 = deconv3d(x, weight, kernel, stride, dilation, group) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | dilation_w | int | 1 | | | 3 | stride_w | int | 1 | | | 4 | pad_left | int | 0 | | | 5 | bias_term | int | 0 | | | 6 | weight_data_size| int | 0 | | | 7 | group | int | 1 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | 11 | kernel_h | int | kernel_w | | | 12 | dilation_h | int | dilation_w | | | 13 | stride_h | int | stride_w | | | 14 | pad_top | int | pad_left | | | 15 | pad_right | int | pad_left | | | 16 | pad_bottom | int | pad_top | | | 17 | pad_behind | int | pad_front | | | 18 | output_pad_right| int | 0 | | | 19 | output_pad_bottom| int | output_pad_right | | | 20 | output_pad_behind| int | output_pad_right | | | 21 | kernel_d | int | kernel_w | | | 22 | dilation_d | int | dilation_w | | | 23 | stride_d | int | stride_w | | | 24 | pad_front | int | pad_left | | | 25 | output_w | int | 0 | | | 26 | output_h | int | output_w | | | 27 | output_d | int | output_w | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] | | bias_data | float | [num_output] | # Dequantize ``` y = x * scale + bias ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | scale_data_size| int | 1 | | | 1 | bias_data_size| int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | scale_data | float | [scale_data_size] | | bias_data | float | [bias_data_size] | # Dropout ``` y = x * scale ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | scale | float | 1.f | | # Eltwise ``` y = elementwise_op(x0, x1, ...) ``` | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | op_type | int | 0 | | | 1 | coeffs | array | [ ] | | Operation type: - 0 = PROD - 1 = SUM - 2 = MAX # ELU ``` if x < 0 y = (exp(x) - 1) * alpha else y = x ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | alpha | float | 0.1f | | # Exp ``` if base == -1 y = exp(shift + x * scale) else y = pow(base, (shift + x * scale)) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | base | float | -1.f | | | 1 | scale | float | 1.f | | | 2 | shift | float | 0.f | | # Flatten Reshape blob to 1 dimension * one_blob_only # GELU ``` if fast_gelu == 1 y = 0.5 * x * (1 + tanh(0.79788452 * (x + 0.044715 * x * x * x))); else y = 0.5 * x * erfc(-0.70710678 * x) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | fast_gelu | int | 0 | use approximation | # Gemm ``` a = transA ? transpose(x0) : x0 b = transb ? transpose(x1) : x1 c = x2 y = gemm(a, b) * alpha + c * beta ``` | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | alpha | float | 1.f | | | 1 | beta | float | 1.f | | | 2 | transA | int | 0 | | | 3 | transb | int | 0 | | # GroupNorm ``` split x along channel axis into group x0, x1 ... l2 normalize for each group x0, x1 ... y = x * gamma + beta ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | group | int | 1 | | | 1 | channels | int | 0 | | | 2 | eps | float | 0.001f | x = x / sqrt(var + eps) | | 3 | affine | int | 1 | | | weight | type | shape | | ------------- | ----- | --------------------- | | gamma_data | float | [channels] | | beta_data | float | [channels] | # GRU Apply a single-layer GRU to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`. ``` y = gru(x) y0, hidden y1 = gru(x0, hidden x1) ``` * one_blob_only if bidirectional | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | hidden size of output | | 1 | weight_data_size| int | 0 | total size of weight matrix | | 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_xc_data| float/fp16/int8 | [input_size, num_output * 3, num_directions] | | bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] | | weight_hc_data| float/fp16/int8 | [num_output, num_output * 3, num_directions] | Direction flag: - 0 = forward only - 1 = reverse only - 2 = bidirectional # HardSigmoid ``` y = clamp(x * alpha + beta, 0, 1) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | alpha | float | 0.2f | | | 1 | beta | float | 0.5f | | # HardSwish ``` y = x * clamp(x * alpha + beta, 0, 1) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | alpha | float | 0.2f | | | 1 | beta | float | 0.5f | | # InnerProduct ``` x2 = innerproduct(x, weight) + bias y = activation(x2, act_type, act_params) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | | | 1 | bias_term | int | 0 | | | 2 | weight_data_size| int | 0 | | | 8 | int8_scale_term| int | 0 | | | 9 | activation_type| int | 0 | | | 10 | activation_params| array | [ ] | | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_data | float/fp16/int8 | [num_input, num_output] | | bias_data | float | [num_output] | | weight_data_int8_scales| float | [num_output] | | bottom_blob_int8_scales| float | [1] | # Input ``` y = input ``` * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | w | int | 0 | | | 1 | h | int | 0 | | | 11 | d | int | 0 | | | 2 | c | int | 0 | | # InstanceNorm ``` split x along channel axis into instance x0, x1 ... l2 normalize for each channel instance x0, x1 ... y = x * gamma + beta ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | channels | int | 0 | | | 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | | 2 | affine | int | 1 | | | weight | type | shape | | ------------- | ----- | --------------------- | | gamma_data | float | [channels] | | beta_data | float | [channels] | # Interp ``` if dynamic_target_size == 0 y = resize(x) by fixed size or scale else y = resize(x0, size(x1)) ``` * one_blob_only if dynamic_target_size == 0 | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | resize_type | int | 0 | | | 1 | height_scale | float | 1.f | | | 2 | width_scale | float | 1.f | | | 3 | output_height | int | 0 | | | 4 | output_width | int | 0 | | | 5 | dynamic_target_size| int | 0 | | | 6 | align_corner | int | 0 | | Resize type: - 1 = Nearest - 2 = Bilinear - 3 = Bicubic # LayerNorm ``` split x along outmost axis into part x0, x1 ... l2 normalize for each part x0, x1 ... y = x * gamma + beta by elementwise ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | affine_size | int | 0 | | | 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | | 2 | affine | int | 1 | | | weight | type | shape | | ------------- | ----- | --------------------- | | gamma_data | float | [affine_size] | | beta_data | float | [affine_size] | # Log ``` if base == -1 y = log(shift + x * scale) else y = log(shift + x * scale) / log(base) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | base | float | -1.f | | | 1 | scale | float | 1.f | | | 2 | shift | float | 0.f | | # LRN ``` if region_type == ACROSS_CHANNELS square_sum = sum of channel window of local_size if region_type == WITHIN_CHANNEL square_sum = sum of spatial window of local_size y = x * pow(bias + alpha * square_sum / (local_size * local_size), -beta) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | region_type | int | 0 | | | 1 | local_size | int | 5 | | | 2 | alpha | float | 1.f | | | 3 | beta | float | 0.75f | | | 4 | bias | float | 1.f | | Region type: - 0 = ACROSS_CHANNELS - 1 = WITHIN_CHANNEL # LSTM Apply a single-layer LSTM to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`. ``` y = lstm(x) y0, hidden y1, cell y2 = lstm(x0, hidden x1, cell x2) ``` * one_blob_only if bidirectional | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | hidden size of output | | 1 | weight_data_size| int | 0 | total size of IFOG weight matrix | | 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_xc_data| float/fp16/int8 | [input_size, num_output * 4, num_directions] | | bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] | | weight_hc_data| float/fp16/int8 | [num_output, num_output * 4, num_directions] | Direction flag: - 0 = forward only - 1 = reverse only - 2 = bidirectional # MemoryData ``` y = data ``` | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | w | int | 0 | | | 1 | h | int | 0 | | | 11 | d | int | 0 | | | 2 | c | int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | data | float | [w, h, d, c] | # Mish ``` y = x * tanh(log(exp(x) + 1)) ``` * one_blob_only * support_inplace # MultiHeadAttention ``` split q k v into num_head part q0, k0, v0, q1, k1, v1 ... for each num_head part xq = affine(q) / (embed_dim / num_head) xk = affine(k) xv = affine(v) xqk = xq * xk softmax_inplace(xqk) xqkv = xqk * xv merge xqkv to out y = affine(out) ``` | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | embed_dim | int | 0 | | | 1 | num_head | int | 1 | | | 2 | weight_data_size| int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | q_weight_data | float/fp16/int8 | [weight_data_size] | | q_bias_data | float | [embed_dim] | | k_weight_data | float/fp16/int8 | [weight_data_size] | | k_bias_data | float | [embed_dim] | | v_weight_data | float/fp16/int8 | [weight_data_size] | | v_bias_data | float | [embed_dim] | | out_weight_data| float/fp16/int8 | [weight_data_size] | | out_bias_data | float | [embed_dim] | # MVN ``` if normalize_variance == 1 && across_channels == 1 y = (x - mean) / (sqrt(var) + eps) of whole blob if normalize_variance == 1 && across_channels == 0 y = (x - mean) / (sqrt(var) + eps) of each channel if normalize_variance == 0 && across_channels == 1 y = x - mean of whole blob if normalize_variance == 0 && across_channels == 0 y = x - mean of each channel ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | normalize_variance| int | 0 | | | 1 | across_channels| int | 0 | | | 2 | eps | float | 0.0001f | x = x / (sqrt(var) + eps) | # Noop ``` y = x ``` # Normalize ``` if across_spatial == 1 && across_channel == 1 x2 = normalize(x) of whole blob if across_spatial == 1 && across_channel == 0 x2 = normalize(x) of each channel if across_spatial == 0 && across_channel == 1 x2 = normalize(x) of each position y = x2 * scale ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | across_spatial| int | 0 | | | 1 | channel_shared| int | 0 | | | 2 | eps | float | 0.0001f | see eps mode | | 3 | scale_data_size| int | 0 | | | 4 | across_channel| int | 0 | | | 9 | eps_mode | int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | scale_data | float | [scale_data_size] | Eps Mode: - 0 = caffe/mxnet x = x / sqrt(var + eps) - 1 = pytorch x = x / max(sqrt(var), eps) - 2 = tensorflow x = x / sqrt(max(var, eps)) # Packing ``` y = wrap_packing(x) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | out_elempack | int | 1 | | | 1 | use_padding | int | 0 | | | 2 | cast_type_from| int | 0 | | | 3 | cast_type_to | int | 0 | | | 4 | storage_type_from| int | 0 | | | 5 | storage_type_to| int | 0 | | # Padding ``` y = pad(x, pads) ``` | param id | name | type | default | description | | --------- | ------------- | ---- | --------- | ----------------- | | 0 | top | int | 0 | | | 1 | bottom | int | 0 | | | 2 | left | int | 0 | | | 3 | right | int | 0 | | | 4 | type | int | 0 | | | 5 | value | float | 0 | | | 6 | per_channel_pad_data_size| int | 0 | | | 7 | front | int | stride_w | | | 8 | behind | int | pad_left | | | weight | type | shape | | ------------- | ----- | --------------------- | | per_channel_pad_data| float | [per_channel_pad_data_size] | Padding type: - 0 = CONSTANT - 1 = REPLICATE - 2 = REFLECT # Permute ``` y = reorder(x) ``` | param id | name | type | default | description | | --------- | ------------- | ---- | --------- | ----------------- | | 0 | order_type | int | 0 | | Order Type: - 0 = WH WHC WHDC - 1 = HW HWC HWDC - 2 = WCH WDHC - 3 = CWH DWHC - 4 = HCW HDWC - 5 = CHW DHWC - 6 = WHCD - 7 = HWCD - 8 = WCHD - 9 = CWHD - 10 = HCWD - 11 = CHWD - 12 = WDCH - 13 = DWCH - 14 = WCDH - 15 = CWDH - 16 = DCWH - 17 = CDWH - 18 = HDCW - 19 = DHCW - 20 = HCDW - 21 = CHDW - 22 = DCHW - 23 = CDHW # PixelShuffle ``` if mode == 0 y = depth_to_space(x) where x channel order is sw-sh-outc if mode == 1 y = depth_to_space(x) where x channel order is outc-sw-sh ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ---- | --------- | ----------------- | | 0 | upscale_factor| int | 1 | | | 1 | mode | int | 0 | | # Pooling ``` x2 = pad(x, pads) x3 = pooling(x2, kernel, stride) ``` | param id | name | type | default | description | | --------- | --------------| ---- | --------- | ----------------- | | 0 | pooling_type | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | stride_w | int | 1 | | | 3 | pad_left | int | 0 | | | 4 | global_pooling| int | 0 | | | 5 | pad_mode | int | 0 | | | 6 | avgpool_count_include_pad| int | 0 | | | 7 | adaptive_pooling| int | 0 | | | 8 | out_w | int | 0 | | | 11 | kernel_h | int | kernel_w | | | 12 | stride_h | int | stride_w | | | 13 | pad_top | int | pad_left | | | 14 | pad_right | int | pad_left | | | 15 | pad_bottom | int | pad_top | | | 18 | out_h | int | out_w | | Pooling type: - 0 = MAX - 1 = AVG Pad mode: - 0 = full padding - 1 = valid padding - 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER - 3 = onnx padding=SAME_LOWER # Pooling1D ``` x2 = pad(x, pads) x3 = pooling1d(x2, kernel, stride) ``` | param id | name | type | default | description | | --------- | --------------| ---- | --------- | ----------------- | | 0 | pooling_type | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | stride_w | int | 1 | | | 3 | pad_left | int | 0 | | | 4 | global_pooling| int | 0 | | | 5 | pad_mode | int | 0 | | | 6 | avgpool_count_include_pad| int | 0 | | | 7 | adaptive_pooling| int | 0 | | | 8 | out_w | int | 0 | | | 14 | pad_right | int | pad_left | | Pooling type: - 0 = MAX - 1 = AVG Pad mode: - 0 = full padding - 1 = valid padding - 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER - 3 = onnx padding=SAME_LOWER # Pooling3D ``` x2 = pad(x, pads) x3 = pooling3d(x2, kernel, stride) ``` | param id | name | type | default | description | | --------- | --------------| ---- | --------- | ----------------- | | 0 | pooling_type | int | 0 | | | 1 | kernel_w | int | 0 | | | 2 | stride_w | int | 1 | | | 3 | pad_left | int | 0 | | | 4 | global_pooling| int | 0 | | | 5 | pad_mode | int | 0 | | | 6 | avgpool_count_include_pad| int | 0 | | | 7 | adaptive_pooling| int | 0 | | | 8 | out_w | int | 0 | | | 11 | kernel_h | int | kernel_w | | | 12 | stride_h | int | stride_w | | | 13 | pad_top | int | pad_left | | | 14 | pad_right | int | pad_left | | | 15 | pad_bottom | int | pad_top | | | 16 | pad_behind | int | pad_front | | | 18 | out_h | int | out_w | | | 21 | kernel_d | int | kernel_w | | | 22 | stride_d | int | stride_w | | | 23 | pad_front | int | pad_left | | | 28 | out_d | int | out_w | | Pooling type: - 0 = MAX - 1 = AVG Pad mode: - 0 = full padding - 1 = valid padding - 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER - 3 = onnx padding=SAME_LOWER # Power ``` y = pow((shift + x * scale), power) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | power | float | 1.f | | | 1 | scale | float | 1.f | | | 2 | shift | float | 0.f | | # PReLU ``` if x < 0 y = x * slope else y = x ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_slope | int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | slope_data | float | [num_slope] | # Quantize ``` y = float2int8(x * scale) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | scale_data_size| int | 1 | | | weight | type | shape | | ------------- | ----- | --------------------- | | scale_data | float | [scale_data_size] | # Reduction ``` y = reduce_op(x * coeff) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | operation | int | 0 | | | 1 | reduce_all | int | 1 | | | 2 | coeff | float | 1.f | | | 3 | axes | array | [ ] | | | 4 | keepdims | int | 0 | | Operation type: - 0 = SUM - 1 = ASUM - 2 = SUMSQ - 3 = MEAN - 4 = MAX - 5 = MIN - 6 = PROD - 7 = L1 - 8 = L2 - 9 = LogSum - 10 = LogSumExp # ReLU ``` if x < 0 y = x * slope else y = x ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | slope | float | 0.f | | # Reorg ``` if mode == 0 y = space_to_depth(x) where x channel order is sw-sh-outc if mode == 1 y = space_to_depth(x) where x channel order is outc-sw-sh ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ---- | --------- | ----------------- | | 0 | stride | int | 1 | | | 1 | mode | int | 0 | | # Requantize ``` x2 = x * scale_in + bias x3 = activation(x2) y = float2int8(x3 * scale_out) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | scale_in_data_size| int | 1 | | | 1 | scale_out_data_size| int | 1 | | | 2 | bias_data_size| int | 0 | | | 3 | activation_type| int | 0 | | | 4 | activation_params| int | [ ] | | | weight | type | shape | | ------------- | ----- | --------------------- | | scale_in_data | float | [scale_in_data_size] | | scale_out_data| float | [scale_out_data_size] | | bias_data | float | [bias_data_size] | # Reshape ``` if permute == 1 y = hwc2chw(reshape(chw2hwc(x))) else y = reshape(x) ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | w | int | -233 | | | 1 | h | int | -233 | | | 11 | d | int | -233 | | | 2 | c | int | -233 | | | 3 | permute | int | 0 | | Reshape flag: - 0 = copy from bottom - -1 = remaining - -233 = drop this dim(default) # RNN Apply a single-layer RNN to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`. ``` y = rnn(x) y0, hidden y1 = rnn(x0, hidden x1) ``` * one_blob_only if bidirectional | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | num_output | int | 0 | hidden size of output | | 1 | weight_data_size| int | 0 | total size of weight matrix | | 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | | weight | type | shape | | ------------- | ----- | --------------------- | | weight_xc_data| float/fp16/int8 | [input_size, num_output, num_directions] | | bias_c_data | float/fp16/int8 | [num_output, 1, num_directions] | | weight_hc_data| float/fp16/int8 | [num_output, num_output, num_directions] | Direction flag: - 0 = forward only - 1 = reverse only - 2 = bidirectional # Scale ``` if scale_data_size == -233 y = x0 * x1 else y = x * scale + bias ``` * one_blob_only if scale_data_size != -233 * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | scale_data_size| int | 0 | | | 1 | bias_term | int | 0 | | | weight | type | shape | | ------------- | ----- | --------------------- | | scale_data | float | [scale_data_size] | | bias_data | float | [scale_data_size] | # SELU ``` if x < 0 y = (exp(x) - 1.f) * alpha * lambda else y = x * lambda ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | alpha | float | 1.67326324f| | | 1 | lambda | float | 1.050700987f| | # ShuffleChannel ``` if reverse == 0 y = shufflechannel(x) by group if reverse == 1 y = shufflechannel(x) by channel / group ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ---- | --------- | ----------------- | | 0 | group | int | 1 | | | 1 | reverse | int | 0 | | # Sigmoid ``` y = 1 / (1 + exp(-x)) ``` * one_blob_only * support_inplace # Slice ``` split x along axis into slices, each part slice size is based on slices array ``` | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | slices | array | [ ] | | | 1 | axis | int | 0 | | # Softmax ``` softmax(x, axis) ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | axis | int | 0 | | | 1 | fixbug0 | int | 0 | hack for bug fix, should be 1 | # Softplus ``` y = log(exp(x) + 1) ``` * one_blob_only * support_inplace # Split ``` y0, y1 ... = x ``` # Swish ``` y = x / (1 + exp(-x)) ``` * one_blob_only * support_inplace # TanH ``` y = tanh(x) ``` * one_blob_only * support_inplace # Threshold ``` if x > threshold y = 1 else y = 0 ``` * one_blob_only * support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | threshold | float | 0.f | | # Tile ``` y = repeat tiles along axis for x ``` * one_blob_only | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | axis | int | 0 | | | 1 | tiles | int | 1 | | | 2 | repeats | array | [ ] | | # UnaryOp ``` y = unaryop(x) ``` - one_blob_only - support_inplace | param id | name | type | default | description | | --------- | ------------- | ----- | --------- | ----------------- | | 0 | op_type | int | 0 | Operation type as follows | Operation type: - 0 = ABS - 1 = NEG - 2 = FLOOR - 3 = CEIL - 4 = SQUARE - 5 = SQRT - 6 = RSQ - 7 = EXP - 8 = LOG - 9 = SIN - 10 = COS - 11 = TAN - 12 = ASIN - 13 = ACOS - 14 = ATAN - 15 = RECIPROCAL - 16 = TANH