### opencv to ncnn * cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR ```cpp // cv::Mat a(h, w, CV_8UC3); ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB, a.cols, a.rows); ``` * cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + keep RGB/BGR order ```cpp // cv::Mat a(h, w, CV_8UC3); ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_RGB, a.cols, a.rows); ``` * cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY ```cpp // cv::Mat rgb(h, w, CV_8UC3); ncnn::Mat inrgb = ncnn::Mat::from_pixels(rgb.data, ncnn::Mat::PIXEL_RGB2GRAY, rgb.cols, rgb.rows); // cv::Mat bgr(h, w, CV_8UC3); ncnn::Mat inbgr = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2GRAY, bgr.cols, bgr.rows); ``` * cv::Mat CV_8UC1 -> ncnn::Mat 1 channel ```cpp // cv::Mat a(h, w, CV_8UC1); ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_GRAY, a.cols, a.rows); ``` * cv::Mat CV_32FC1 -> ncnn::Mat 1 channel * **You could construct ncnn::Mat and fill data into it directly to avoid data copy** ```cpp // cv::Mat a(h, w, CV_32FC1); ncnn::Mat in(a.cols, a.rows, 1, (void*)a.data); in = in.clone(); ``` * cv::Mat CV_32FC3 -> ncnn::Mat 3 channel * **You could construct ncnn::Mat and fill data into it directly to avoid data copy** ```cpp // cv::Mat a(h, w, CV_32FC3); ncnn::Mat in_pack3(a.cols, a.rows, 1, (void*)a.data, (size_t)4u * 3, 3); ncnn::Mat in; ncnn::convert_packing(in_pack3, in, 1); ``` * std::vector < cv::Mat > + CV_32FC1 -> ncnn::Mat multiple channels * **You could construct ncnn::Mat and fill data into it directly to avoid data copy** ```cpp // std::vector a(channels, cv::Mat(h, w, CV_32FC1)); int channels = a.size(); ncnn::Mat in(a[0].cols, a[0].rows, channels); for (int p=0; p cv::Mat CV_8UC3 + swap RGB/BGR * **You may need to call in.substract_mean_normalize() first to scale values from 0..1 to 0..255** ```cpp // ncnn::Mat in(w, h, 3); cv::Mat a(in.h, in.w, CV_8UC3); in.to_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB); ``` * ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order * **You may need to call in.substract_mean_normalize() first to scale values from 0..1 to 0..255** ```cpp // ncnn::Mat in(w, h, 3); cv::Mat a(in.h, in.w, CV_8UC3); in.to_pixels(a.data, ncnn::Mat::PIXEL_RGB); ``` * ncnn::Mat 1 channel -> cv::Mat CV_8UC1 * **You may need to call in.substract_mean_normalize() first to scale values from 0..1 to 0..255** ```cpp // ncnn::Mat in(w, h, 1); cv::Mat a(in.h, in.w, CV_8UC1); in.to_pixels(a.data, ncnn::Mat::PIXEL_GRAY); ``` * ncnn::Mat 1 channel -> cv::Mat CV_32FC1 * **You could consume or manipulate ncnn::Mat data directly to avoid data copy** ```cpp // ncnn::Mat in; cv::Mat a(in.h, in.w, CV_32FC1); memcpy((uchar*)a.data, in.data, in.w * in.h * sizeof(float)); ``` * ncnn::Mat 3 channel -> cv::Mat CV_32FC3 * **You could consume or manipulate ncnn::Mat data directly to avoid data copy** ```cpp // ncnn::Mat in(w, h, 3); ncnn::Mat in_pack3; ncnn::convert_packing(in, in_pack3, 3); cv::Mat a(in.h, in.w, CV_32FC3); memcpy((uchar*)a.data, in_pack3.data, in.w * in.h * 3 * sizeof(float)); ``` * ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1 * **You could consume or manipulate ncnn::Mat data directly to avoid data copy** ```cpp // ncnn::Mat in(w, h, channels); std::vector a(in.c); for (int p=0; p