// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "layer/priorbox.h" #include "testutil.h" static int test_priorbox_caffe() { ncnn::Mat min_sizes(1); min_sizes[0] = 105.f; ncnn::Mat max_sizes(1); max_sizes[0] = 150.f; ncnn::Mat aspect_ratios(2); aspect_ratios[0] = 2.f; aspect_ratios[1] = 3.f; ncnn::ParamDict pd; pd.set(0, min_sizes); pd.set(1, max_sizes); pd.set(2, aspect_ratios); pd.set(3, 0.1f); // variances[0] pd.set(4, 0.1f); // variances[1] pd.set(5, 0.2f); // variances[2] pd.set(6, 0.2f); // variances[3] pd.set(7, 1); // flip pd.set(8, 0); // clip pd.set(9, -233); // image_width pd.set(10, -233); // image_height pd.set(11, -233.f); // step_width pd.set(12, -233.f); // step_height pd.set(13, 0.f); // offset pd.set(14, 0.f); // step_mmdetection pd.set(15, 0.f); // center_mmdetection std::vector weights(0); std::vector as(2); as[0] = RandomMat(72, 72, 1); as[1] = RandomMat(512, 512, 1); int ret = test_layer("PriorBox", pd, weights, as, 1); if (ret != 0) { fprintf(stderr, "test_priorbox_caffe failed\n"); } return ret; } static int test_priorbox_mxnet() { ncnn::Mat min_sizes(2); min_sizes[0] = 0.15f; min_sizes[1] = 0.2121f; ncnn::Mat max_sizes(0); ncnn::Mat aspect_ratios(5); aspect_ratios[0] = 1.f; aspect_ratios[1] = 2.f; aspect_ratios[2] = 0.5f; aspect_ratios[3] = 3.f; aspect_ratios[4] = 0.333333; ncnn::ParamDict pd; pd.set(0, min_sizes); pd.set(1, max_sizes); pd.set(2, aspect_ratios); pd.set(3, 0.1f); // variances[0] pd.set(4, 0.1f); // variances[1] pd.set(5, 0.2f); // variances[2] pd.set(6, 0.2f); // variances[3] pd.set(7, 0); // flip pd.set(8, 0); // clip pd.set(9, -233); // image_width pd.set(10, -233); // image_height pd.set(11, -233.f); // step_width pd.set(12, -233.f); // step_height pd.set(13, 0.5f); // offset pd.set(14, 0.f); // step_mmdetection pd.set(15, 0.f); // center_mmdetection std::vector weights(0); std::vector as(1); as[0] = RandomMat(72, 72, 1); int ret = test_layer("PriorBox", pd, weights, as, 1); if (ret != 0) { fprintf(stderr, "test_priorbox_mxnet failed\n"); } return ret; } int main() { SRAND(7767517); return 0 || test_priorbox_caffe() || test_priorbox_mxnet(); }