// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "pass_level1.h" // #include "../pass_level3/fuse_expression.h" #include "../utils.h" namespace pnnx { class Conv1d : public FuseModulePass { public: const char* match_type_str() const { return "__torch__.torch.nn.modules.conv.Conv1d"; } const char* type_str() const { return "nn.Conv1d"; } void write(Operator* op, const std::shared_ptr& graph, const torch::jit::Module& mod) const { // { // pnnx::Graph pnnx_graph; // // pnnx_graph.load(mod, graph); // // pnnx::fuse_expression(pnnx_graph); // // pnnx_graph.save("tmp.param", "tmp.bin"); // } const torch::jit::Node* convolution = find_node_by_kind(graph, "aten::_convolution"); const torch::jit::Node* convolution_mode = find_node_by_kind(graph, "aten::_convolution_mode"); const torch::jit::Node* reflection_pad1d = find_node_by_kind(graph, "aten::reflection_pad1d"); const torch::jit::Node* replication_pad1d = find_node_by_kind(graph, "aten::replication_pad1d"); if (convolution_mode) { convolution = convolution_mode; } const auto& weight = mod.attr("weight").toTensor(); op->params["groups"] = convolution->namedInput("groups"); op->params["in_channels"] = weight.size(1) * op->params["groups"].i; op->params["out_channels"] = weight.size(0); op->params["kernel_size"] = Parameter{weight.size(2)}; op->params["stride"] = convolution->namedInput("stride"); if (reflection_pad1d) { op->params["padding_mode"] = "reflect"; op->params["padding"] = reflection_pad1d->namedInput("padding"); std::vector& padding = op->params["padding"].ai; if (padding.size() == 2) { // Conv1d only accepts tuple of one integer if (padding[0] == padding[1]) { padding.resize(1); } else if (padding[0] != padding[1]) { padding.resize(0); op->params["padding"].s = "same"; } } } else if (replication_pad1d) { op->params["padding_mode"] = "replicate"; op->params["padding"] = replication_pad1d->namedInput("padding"); std::vector& padding = op->params["padding"].ai; if (padding.size() == 2) { // Conv1d only accepts tuple of one integer if (padding[0] == padding[1]) { padding.resize(1); } else if (padding[0] != padding[1]) { padding.resize(0); op->params["padding"].s = "same"; } } } else { op->params["padding_mode"] = "zeros"; op->params["padding"] = convolution->namedInput("padding"); } op->params["dilation"] = convolution->namedInput("dilation"); op->params["bias"] = mod.hasattr("bias"); op->attrs["weight"] = weight; if (mod.hasattr("bias")) { op->attrs["bias"] = mod.attr("bias").toTensor(); } } }; REGISTER_GLOBAL_PNNX_FUSE_MODULE_PASS(Conv1d) } // namespace pnnx