# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.w4 = nn.Parameter(torch.rand(16)) self.w5 = nn.Parameter(torch.rand(2)) self.w6 = nn.Parameter(torch.rand(3)) self.w7 = nn.Parameter(torch.rand(1)) def forward(self, x, y, z, w, w0, w1, w2, w3): x = F.prelu(x, w0) x = F.prelu(x, self.w4) y = F.prelu(y, w1) y = F.prelu(y, self.w5) z = F.prelu(z, w2) z = F.prelu(z, self.w6) w = F.prelu(w, w3) w = F.prelu(w, self.w7) return x, y, z, w def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 16) y = torch.rand(12, 2, 16) z = torch.rand(1, 3, 12, 16) w = torch.rand(1, 5, 7, 9, 11) w0 = torch.rand(16) w1 = torch.rand(2) w2 = torch.rand(3) w3 = torch.rand(1) a0, a1, a2, a3 = net(x, y, z, w, w0, w1, w2, w3) # export torchscript mod = torch.jit.trace(net, (x, y, z, w, w0, w1, w2, w3)) mod.save("test_F_prelu.pt") # torchscript to pnnx import os os.system("../src/pnnx test_F_prelu.pt inputshape=[1,16],[12,2,16],[1,3,12,16],[1,5,7,9,11],[16],[2],[3],[1]") # pnnx inference import test_F_prelu_pnnx b0, b1, b2, b3 = test_F_prelu_pnnx.test_inference() return torch.equal(a0, b0) and torch.equal(a1, b1) and torch.equal(a2, b2) and torch.equal(a3, b3) if __name__ == "__main__": if test(): exit(0) else: exit(1)