# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x, y, z, w): x = F.relu6(x) y = F.relu6(y) z = F.relu6(z) w = F.relu6(w) return x, y, z, w def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 16) y = torch.rand(12, 2, 16) z = torch.rand(1, 3, 12, 16) w = torch.rand(1, 5, 7, 9, 11) a0, a1, a2, a3 = net(x, y, z, w) # export torchscript mod = torch.jit.trace(net, (x, y, z, w)) mod.save("test_F_relu6.pt") # torchscript to pnnx import os os.system("../src/pnnx test_F_relu6.pt inputshape=[1,16],[12,2,16],[1,3,12,16],[1,5,7,9,11]") # pnnx inference import test_F_relu6_pnnx b0, b1, b2, b3 = test_F_relu6_pnnx.test_inference() return torch.equal(a0, b0) and torch.equal(a1, b1) and torch.equal(a2, b2) and torch.equal(a3, b3) if __name__ == "__main__": if test(): exit(0) else: exit(1)