# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x, y, z, w): x = F.upsample(x, size=16) x = F.upsample(x, scale_factor=2, mode='nearest') x = F.upsample(x, size=(20), mode='nearest') x = F.upsample(x, scale_factor=(4), mode='nearest') x = F.upsample(x, size=16, mode='linear') x = F.upsample(x, scale_factor=2, mode='linear') x = F.upsample(x, size=(24), mode='linear', align_corners=True) x = F.upsample(x, scale_factor=(3), mode='linear', align_corners=True) y = F.upsample(y, size=16) y = F.upsample(y, scale_factor=2, mode='nearest') y = F.upsample(y, size=(20,20), mode='nearest') y = F.upsample(y, scale_factor=(4,4), mode='nearest') y = F.upsample(y, size=(16,24), mode='nearest') y = F.upsample(y, scale_factor=(2,3), mode='nearest') y = F.upsample(y, size=16, mode='bilinear') y = F.upsample(y, scale_factor=2, mode='bilinear') y = F.upsample(y, size=(20,20), mode='bilinear', align_corners=False) y = F.upsample(y, scale_factor=(4,4), mode='bilinear', align_corners=False) y = F.upsample(y, size=(16,24), mode='bilinear', align_corners=True) y = F.upsample(y, scale_factor=(2,3), mode='bilinear', align_corners=True) y = F.upsample(y, size=16, mode='bicubic') y = F.upsample(y, scale_factor=2, mode='bicubic') y = F.upsample(y, size=(20,20), mode='bicubic', align_corners=False) y = F.upsample(y, scale_factor=(4,4), mode='bicubic', align_corners=False) y = F.upsample(y, size=(16,24), mode='bicubic', align_corners=True) y = F.upsample(y, scale_factor=(2,3), mode='bicubic', align_corners=True) z = F.upsample(z, size=16) z = F.upsample(z, scale_factor=2, mode='nearest') z = F.upsample(z, size=(20,20,20), mode='nearest') z = F.upsample(z, scale_factor=(4,4,4), mode='nearest') z = F.upsample(z, size=(16,24,20), mode='nearest') z = F.upsample(z, scale_factor=(2,3,4), mode='nearest') z = F.upsample(z, size=16, mode='trilinear') z = F.upsample(z, scale_factor=2, mode='trilinear') z = F.upsample(z, size=(20,20,20), mode='trilinear', align_corners=False) z = F.upsample(z, scale_factor=(4,4,4), mode='trilinear', align_corners=False) z = F.upsample(z, size=(16,24,20), mode='trilinear', align_corners=True) z = F.upsample(z, scale_factor=(2,3,4), mode='trilinear', align_corners=True) w = F.upsample(w, scale_factor=(1.499,1.499), mode='nearest') return x, y, z, w def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 3, 32) y = torch.rand(1, 3, 32, 32) z = torch.rand(1, 3, 32, 32, 32) w = torch.rand(1, 8, 12, 12) a = net(x, y, z, w) # export torchscript mod = torch.jit.trace(net, (x, y, z, w)) mod.save("test_F_upsample.pt") # torchscript to pnnx import os os.system("../src/pnnx test_F_upsample.pt inputshape=[1,3,32],[1,3,32,32],[1,3,32,32,32],[1,8,12,12]") # pnnx inference import test_F_upsample_pnnx b = test_F_upsample_pnnx.test_inference() for a0, b0 in zip(a, b): if not torch.equal(a0, b0): return False return True if __name__ == "__main__": if test(): exit(0) else: exit(1)