# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x, y, w): x = F.upsample_nearest(x, size=(12,12)) x = F.upsample_nearest(x, scale_factor=2) y = F.upsample_nearest(y, size=(8,10,9)) y = F.upsample_nearest(y, scale_factor=3) w = F.upsample_nearest(w, scale_factor=(2.976744,2.976744)) return x, y, w def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 12, 24, 64) y = torch.rand(1, 4, 10, 24, 32) w = torch.rand(1, 8, 86, 86) a = net(x, y, w) # export torchscript mod = torch.jit.trace(net, (x, y, w)) mod.save("test_F_upsample_nearest.pt") # torchscript to pnnx import os os.system("../src/pnnx test_F_upsample_nearest.pt inputshape=[1,12,24,64],[1,4,10,24,32],[1,8,86,86]") # pnnx inference import test_F_upsample_nearest_pnnx b = test_F_upsample_nearest_pnnx.test_inference() for a0, b0 in zip(a, b): if not torch.equal(a0, b0): return False return True if __name__ == "__main__": if test(): exit(0) else: exit(1)