# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv_0 = nn.Conv2d(in_channels=12, out_channels=16, kernel_size=3) self.conv_1 = nn.Conv2d(in_channels=16, out_channels=20, kernel_size=(2,4), stride=(2,1), padding=2, dilation=1) self.conv_2 = nn.Conv2d(in_channels=20, out_channels=24, kernel_size=(1,3), stride=1, padding=(2,4), dilation=1, groups=1, bias=False) if torch.__version__ < '1.9': self.conv_3 = nn.Conv2d(in_channels=24, out_channels=28, kernel_size=(5,4), stride=1, padding=0, dilation=1, groups=4, bias=True) self.conv_4 = nn.Conv2d(in_channels=28, out_channels=32, kernel_size=3, stride=1, padding=1, dilation=(1,2), groups=2, bias=False, padding_mode='zeros') else: self.conv_3 = nn.Conv2d(in_channels=24, out_channels=28, kernel_size=(5,4), stride=1, padding='valid', dilation=1, groups=4, bias=True) self.conv_4 = nn.Conv2d(in_channels=28, out_channels=32, kernel_size=3, stride=1, padding='same', dilation=(1,2), groups=2, bias=False, padding_mode='zeros') self.conv_5 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=2, stride=2, padding=3, dilation=1, groups=32, bias=True, padding_mode='reflect') self.conv_6 = nn.Conv2d(in_channels=32, out_channels=28, kernel_size=2, stride=1, padding=2, dilation=1, groups=1, bias=False, padding_mode='replicate') #self.conv_7 = nn.Conv2d(in_channels=28, out_channels=24, kernel_size=3, stride=2, padding=(5,6), dilation=2, groups=1, bias=True, padding_mode='circular') def forward(self, x): x = self.conv_0(x) x = self.conv_1(x) x = self.conv_2(x) x = self.conv_3(x) x = self.conv_4(x) x = self.conv_5(x) x = self.conv_6(x) #x = self.conv_7(x) return x def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 12, 64, 64) a = net(x) # export torchscript mod = torch.jit.trace(net, x) mod.save("test_nn_Conv2d.pt") # torchscript to pnnx import os os.system("../src/pnnx test_nn_Conv2d.pt inputshape=[1,12,64,64]") # pnnx inference import test_nn_Conv2d_pnnx b = test_nn_Conv2d_pnnx.test_inference() return torch.equal(a, b) if __name__ == "__main__": if test(): exit(0) else: exit(1)