# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.rnn_0_0 = nn.RNN(input_size=32, hidden_size=16) self.rnn_0_1 = nn.RNN(input_size=16, hidden_size=16, num_layers=3, nonlinearity='tanh', bias=False) self.rnn_0_2 = nn.RNN(input_size=16, hidden_size=16, num_layers=4, nonlinearity='relu', bias=True, bidirectional=True) self.rnn_0_3 = nn.RNN(input_size=16, hidden_size=16, num_layers=4, nonlinearity='tanh', bias=True, bidirectional=True) self.rnn_1_0 = nn.RNN(input_size=25, hidden_size=16, batch_first=True) self.rnn_1_1 = nn.RNN(input_size=16, hidden_size=16, num_layers=3, nonlinearity='tanh', bias=False, batch_first=True) self.rnn_1_2 = nn.RNN(input_size=16, hidden_size=16, num_layers=4, nonlinearity='relu', bias=True, batch_first=True, bidirectional=True) self.rnn_1_3 = nn.RNN(input_size=16, hidden_size=16, num_layers=4, nonlinearity='tanh', bias=True, batch_first=True, bidirectional=True) def forward(self, x, y): x0, h0 = self.rnn_0_0(x) x1, h1 = self.rnn_0_1(x0) x2, h2 = self.rnn_0_2(x1) x3, h3 = self.rnn_0_3(x1, h2) y0, h4 = self.rnn_1_0(y) y1, h5 = self.rnn_1_1(y0) y2, h6 = self.rnn_1_2(y1) y3, h7 = self.rnn_1_3(y1, h6) return x2, x3, h0, h1, h2, h3, y2, y3, h4, h5, h6, h7 def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(10, 1, 32) y = torch.rand(1, 12, 25) a = net(x, y) # export torchscript mod = torch.jit.trace(net, (x, y)) mod.save("test_nn_RNN.pt") # torchscript to pnnx import os os.system("../src/pnnx test_nn_RNN.pt inputshape=[10,1,32],[1,12,25]") # pnnx inference import test_nn_RNN_pnnx b = test_nn_RNN_pnnx.test_inference() for a0, b0 in zip(a, b): if not torch.equal(a0, b0): return False return True if __name__ == "__main__": if test(): exit(0) else: exit(1)