# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.up_0 = nn.UpsamplingNearest2d(size=16) self.up_1 = nn.UpsamplingNearest2d(scale_factor=2) self.up_2 = nn.UpsamplingNearest2d(size=(20,20)) self.up_3 = nn.UpsamplingNearest2d(scale_factor=(4,4)) self.up_4 = nn.UpsamplingNearest2d(size=(16,24)) self.up_5 = nn.UpsamplingNearest2d(scale_factor=(2,3)) self.up_w = nn.UpsamplingNearest2d(scale_factor=(2.976744,2.976744)) def forward(self, x, w): x = self.up_0(x) x = self.up_1(x) x = self.up_2(x) x = self.up_3(x) x = self.up_4(x) x = self.up_5(x) w = self.up_w(w) return x, w def test(): net = Model() net.eval() torch.manual_seed(0) x = torch.rand(1, 3, 32, 32) w = torch.rand(1, 8, 86, 86) a = net(x, w) # export torchscript mod = torch.jit.trace(net, (x, w)) mod.save("test_nn_UpsamplingNearest2d.pt") # torchscript to pnnx import os os.system("../src/pnnx test_nn_UpsamplingNearest2d.pt inputshape=[1,3,32,32],[1,8,86,86]") # pnnx inference import test_nn_UpsamplingNearest2d_pnnx b = test_nn_UpsamplingNearest2d_pnnx.test_inference() for a0, b0 in zip(a, b): if not torch.equal(a0, b0): return False return True if __name__ == "__main__": if test(): exit(0) else: exit(1)