// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include #include #include "functors.hpp" #include "types.hpp" #include "vector_traits.hpp" #include "grid_stride_range.hpp" #include "execution.hpp" #include "../cuda4dnn/csl/stream.hpp" #include "../cuda4dnn/csl/span.hpp" using namespace cv::dnn::cuda4dnn::csl; using namespace cv::dnn::cuda4dnn::csl::device; namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels { namespace raw { template __global__ void biasN_generic_op_inplace_vec(Span inplace_output, size_type inner_size, View bias, const typename ActivationOp::Params params) { using vector_type = get_vector_type_t; auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data()); ActivationOp activation_op(params); for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) { const index_type bias_idx = (i / inner_size) % bias.size(); vector_type vec; v_load(vec, inplace_output_vPtr[i]); for(int j = 0; j < vec.size(); j++) vec.data[j] = activation_op(vec.data[j] + bias[bias_idx]); v_store(inplace_output_vPtr[i], vec); } } } /* namespace raw */ template static void launch_vectorized_biasN_generic_op_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias, const typename ActivationOp::Params& params) { CV_Assert(inplace_output.size() % inner_size == 0); CV_Assert(is_fully_aligned(inplace_output, N)); CV_Assert(inner_size % N == 0); auto kernel = raw::biasN_generic_op_inplace_vec; auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream); launch_kernel(kernel, policy, inplace_output, inner_size / N, bias, params); } template static void biasN_generic_op_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias, const typename ActivationOp::Params& params = {}) { if (is_fully_aligned(inplace_output, 4) && inner_size % 4 == 0) { launch_vectorized_biasN_generic_op_inplace(stream, inplace_output, inner_size, bias, params); } else if (is_fully_aligned(inplace_output, 2) && inner_size % 2 == 0) { launch_vectorized_biasN_generic_op_inplace(stream, inplace_output, inner_size, bias, params); } else { launch_vectorized_biasN_generic_op_inplace(stream, inplace_output, inner_size, bias, params); } } template void biasN_relu_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias, T slope) { biasN_generic_op_inplace>(stream, inplace_output, inner_size, bias, {slope}); } template void biasN_clipped_relu_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias, T floor, T ceil) { CV_Assert(static_cast(floor) <= static_cast(ceil)); biasN_generic_op_inplace>(stream, inplace_output, inner_size, bias, {floor, ceil}); } template void biasN_tanh_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias) { biasN_generic_op_inplace>(stream, inplace_output, inner_size, bias); } template void biasN_swish_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias) { biasN_generic_op_inplace>(stream, inplace_output, inner_size, bias); } template void biasN_mish_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias) { biasN_generic_op_inplace>(stream, inplace_output, inner_size, bias); } template void biasN_sigmoid_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias) { biasN_generic_op_inplace>(stream, inplace_output, inner_size, bias); } template void biasN_power_inplace(const Stream& stream, Span inplace_output, std::size_t inner_size, View bias, T power, T scale, T shift) { biasN_generic_op_inplace>(stream, inplace_output, inner_size, bias, {power, scale, shift}); } #if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530) template void biasN_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half); template void biasN_clipped_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half, __half); template void biasN_tanh_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>); template void biasN_swish_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>); template void biasN_mish_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>); template void biasN_sigmoid_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>); template void biasN_power_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half, __half, __half); #endif template void biasN_relu_inplace(const Stream&, Span, std::size_t, View, float); template void biasN_clipped_relu_inplace(const Stream&, Span, std::size_t, View, float, float); template void biasN_tanh_inplace(const Stream&, Span, std::size_t, View); template void biasN_swish_inplace(const Stream&, Span, std::size_t, View); template void biasN_mish_inplace(const Stream&, Span, std::size_t, View); template void biasN_sigmoid_inplace(const Stream&, Span, std::size_t, View); template void biasN_power_inplace(const Stream&, Span, std::size_t, View, float, float, float); }}}} /* namespace cv::dnn::cuda4dnn::kernels */