// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html #include "test_precomp.hpp" // #define GENERATE_DATA // generate data in debug mode namespace opencv_test { namespace { #ifndef GENERATE_DATA static bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 ) { const float maxPtDif = 1.f; const float maxSizeDif = 1.f; const float maxAngleDif = 2.f; const float maxResponseDif = 0.1f; float dist = (float)cv::norm( p1.pt - p2.pt ); return (dist < maxPtDif && fabs(p1.size - p2.size) < maxSizeDif && abs(p1.angle - p2.angle) < maxAngleDif && abs(p1.response - p2.response) < maxResponseDif && (p1.octave & 0xffff) == (p2.octave & 0xffff) // do not care about sublayers and class_id ); } #endif TEST(Features2d_AFFINE_FEATURE, regression) { Mat image = imread(cvtest::findDataFile("features2d/tsukuba.png")); string xml = cvtest::TS::ptr()->get_data_path() + "asift/regression_cpp.xml.gz"; ASSERT_FALSE(image.empty()); Mat gray; cvtColor(image, gray, COLOR_BGR2GRAY); // Default ASIFT generates too large descriptors. This test uses small maxTilt to suppress the size of testdata. Ptr ext = AffineFeature::create(SIFT::create(), 2, 0, 1.4142135623730951f, 144.0f); Mat mpt, msize, mangle, mresponse, moctave, mclass_id; #ifdef GENERATE_DATA // calculate vector calcKeypoints; Mat calcDescriptors; ext->detectAndCompute(gray, Mat(), calcKeypoints, calcDescriptors, false); // create keypoints XML FileStorage fs(xml, FileStorage::WRITE); ASSERT_TRUE(fs.isOpened()) << xml; std::cout << "Creating keypoints XML..." << std::endl; mpt = Mat(calcKeypoints.size(), 2, CV_32F); msize = Mat(calcKeypoints.size(), 1, CV_32F); mangle = Mat(calcKeypoints.size(), 1, CV_32F); mresponse = Mat(calcKeypoints.size(), 1, CV_32F); moctave = Mat(calcKeypoints.size(), 1, CV_32S); mclass_id = Mat(calcKeypoints.size(), 1, CV_32S); for( size_t i = 0; i < calcKeypoints.size(); i++ ) { const KeyPoint& key = calcKeypoints[i]; mpt.at(i, 0) = key.pt.x; mpt.at(i, 1) = key.pt.y; msize.at(i, 0) = key.size; mangle.at(i, 0) = key.angle; mresponse.at(i, 0) = key.response; moctave.at(i, 0) = key.octave; mclass_id.at(i, 0) = key.class_id; } fs << "keypoints_pt" << mpt; fs << "keypoints_size" << msize; fs << "keypoints_angle" << mangle; fs << "keypoints_response" << mresponse; fs << "keypoints_octave" << moctave; fs << "keypoints_class_id" << mclass_id; // create descriptor XML fs << "descriptors" << calcDescriptors; fs.release(); #else const float badCountsRatio = 0.01f; const float badDescriptorDist = 1.0f; const float maxBadKeypointsRatio = 0.15f; const float maxBadDescriptorRatio = 0.15f; // read keypoints vector validKeypoints; Mat validDescriptors; FileStorage fs(xml, FileStorage::READ); ASSERT_TRUE(fs.isOpened()) << xml; fs["keypoints_pt"] >> mpt; ASSERT_EQ(mpt.type(), CV_32F); fs["keypoints_size"] >> msize; ASSERT_EQ(msize.type(), CV_32F); fs["keypoints_angle"] >> mangle; ASSERT_EQ(mangle.type(), CV_32F); fs["keypoints_response"] >> mresponse; ASSERT_EQ(mresponse.type(), CV_32F); fs["keypoints_octave"] >> moctave; ASSERT_EQ(moctave.type(), CV_32S); fs["keypoints_class_id"] >> mclass_id; ASSERT_EQ(mclass_id.type(), CV_32S); validKeypoints.resize(mpt.rows); for( int i = 0; i < (int)validKeypoints.size(); i++ ) { validKeypoints[i].pt.x = mpt.at(i, 0); validKeypoints[i].pt.y = mpt.at(i, 1); validKeypoints[i].size = msize.at(i, 0); validKeypoints[i].angle = mangle.at(i, 0); validKeypoints[i].response = mresponse.at(i, 0); validKeypoints[i].octave = moctave.at(i, 0); validKeypoints[i].class_id = mclass_id.at(i, 0); } // read descriptors fs["descriptors"] >> validDescriptors; fs.release(); // calc and compare keypoints vector calcKeypoints; ext->detectAndCompute(gray, Mat(), calcKeypoints, noArray(), false); float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size(); ASSERT_LT(countRatio, 1 + badCountsRatio) << "Bad keypoints count ratio."; ASSERT_GT(countRatio, 1 - badCountsRatio) << "Bad keypoints count ratio."; int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size()); for( size_t v = 0; v < validKeypoints.size(); v++ ) { int nearestIdx = -1; float minDist = std::numeric_limits::max(); float angleDistOfNearest = std::numeric_limits::max(); for( size_t c = 0; c < calcKeypoints.size(); c++ ) { if( validKeypoints[v].class_id != calcKeypoints[c].class_id ) continue; float curDist = (float)cv::norm( calcKeypoints[c].pt - validKeypoints[v].pt ); if( curDist < minDist ) { minDist = curDist; nearestIdx = (int)c; angleDistOfNearest = abs( calcKeypoints[c].angle - validKeypoints[v].angle ); } else if( curDist == minDist ) // the keypoints whose positions are same but angles are different { float angleDist = abs( calcKeypoints[c].angle - validKeypoints[v].angle ); if( angleDist < angleDistOfNearest ) { nearestIdx = (int)c; angleDistOfNearest = angleDist; } } } if( nearestIdx == -1 || !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) ) badPointCount++; } float badKeypointsRatio = (float)badPointCount / (float)commonPointCount; std::cout << "badKeypointsRatio: " << badKeypointsRatio << std::endl; ASSERT_LT( badKeypointsRatio , maxBadKeypointsRatio ) << "Bad accuracy!"; // Calc and compare descriptors. This uses validKeypoints for extraction. Mat calcDescriptors; ext->detectAndCompute(gray, Mat(), validKeypoints, calcDescriptors, true); int dim = validDescriptors.cols; int badDescriptorCount = 0; L1 distance; for( int i = 0; i < (int)validKeypoints.size(); i++ ) { float dist = distance( validDescriptors.ptr(i), calcDescriptors.ptr(i), dim ); if( dist > badDescriptorDist ) badDescriptorCount++; } float badDescriptorRatio = (float)badDescriptorCount / (float)validKeypoints.size(); std::cout << "badDescriptorRatio: " << badDescriptorRatio << std::endl; ASSERT_LT( badDescriptorRatio, maxBadDescriptorRatio ) << "Too many descriptors mismatched."; #endif } }} // namespace