#include #include #include #include #include #include #include #include #include #include #include #include #include #include const std::string about = "This is an OpenCV-based version of Privacy Masking Camera example"; const std::string keys = "{ h help | | Print this help message }" "{ input | | Path to the input video file }" "{ platm | vehicle-license-plate-detection-barrier-0106.xml | Path to OpenVINO IE vehicle/plate detection model (.xml) }" "{ platd | CPU | Target device for vehicle/plate detection model (e.g. CPU, GPU, VPU, ...) }" "{ facem | face-detection-retail-0005.xml | Path to OpenVINO IE face detection model (.xml) }" "{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }" "{ trad | false | Run processing in a traditional (non-pipelined) way }" "{ noshow | false | Don't display UI (improves performance) }"; namespace { std::string weights_path(const std::string &model_path) { const auto EXT_LEN = 4u; const auto sz = model_path.size(); CV_Assert(sz > EXT_LEN); auto ext = model_path.substr(sz - EXT_LEN); std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ return static_cast(std::tolower(c)); }); CV_Assert(ext == ".xml"); return model_path.substr(0u, sz - EXT_LEN) + ".bin"; } } // namespace namespace custom { G_API_NET(VehLicDetector, , "vehicle-license-plate-detector"); G_API_NET(FaceDetector, , "face-detector"); using GDetections = cv::GArray; G_API_OP(ParseSSD, , "custom.privacy_masking.postproc") { static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GMatDesc &, int) { return cv::empty_array_desc(); } }; using GPrims = cv::GArray; G_API_OP(ToMosaic, , "custom.privacy_masking.to_mosaic") { static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GArrayDesc &) { return cv::empty_array_desc(); } }; GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) { static void run(const cv::Mat &in_ssd_result, const cv::Mat &in_frame, const int filter_label, std::vector &out_objects) { const auto &in_ssd_dims = in_ssd_result.size; CV_Assert(in_ssd_dims.dims() == 4u); const int MAX_PROPOSALS = in_ssd_dims[2]; const int OBJECT_SIZE = in_ssd_dims[3]; CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size const cv::Size upscale = in_frame.size(); const cv::Rect surface({0,0}, upscale); out_objects.clear(); const float *data = in_ssd_result.ptr(); for (int i = 0; i < MAX_PROPOSALS; i++) { const float image_id = data[i * OBJECT_SIZE + 0]; const float label = data[i * OBJECT_SIZE + 1]; const float confidence = data[i * OBJECT_SIZE + 2]; const float rc_left = data[i * OBJECT_SIZE + 3]; const float rc_top = data[i * OBJECT_SIZE + 4]; const float rc_right = data[i * OBJECT_SIZE + 5]; const float rc_bottom = data[i * OBJECT_SIZE + 6]; if (image_id < 0.f) { break; // marks end-of-detections } if (confidence < 0.5f) { continue; // skip objects with low confidence } if (filter_label != -1 && static_cast(label) != filter_label) { continue; // filter out object classes if filter is specified } cv::Rect rc; // map relative coordinates to the original image scale rc.x = static_cast(rc_left * upscale.width); rc.y = static_cast(rc_top * upscale.height); rc.width = static_cast(rc_right * upscale.width) - rc.x; rc.height = static_cast(rc_bottom * upscale.height) - rc.y; out_objects.emplace_back(rc & surface); } } }; GAPI_OCV_KERNEL(OCVToMosaic, ToMosaic) { static void run(const std::vector &in_plate_rcs, const std::vector &in_face_rcs, std::vector &out_prims) { out_prims.clear(); const auto cvt = [](cv::Rect rc) { // Align the mosaic region to mosaic block size const int BLOCK_SIZE = 24; const int dw = BLOCK_SIZE - (rc.width % BLOCK_SIZE); const int dh = BLOCK_SIZE - (rc.height % BLOCK_SIZE); rc.width += dw; rc.height += dh; rc.x -= dw / 2; rc.y -= dh / 2; return cv::gapi::wip::draw::Mosaic{rc, BLOCK_SIZE, 0}; }; for (auto &&rc : in_plate_rcs) { out_prims.emplace_back(cvt(rc)); } for (auto &&rc : in_face_rcs) { out_prims.emplace_back(cvt(rc)); } } }; } // namespace custom int main(int argc, char *argv[]) { cv::CommandLineParser cmd(argc, argv, keys); cmd.about(about); if (cmd.has("help")) { cmd.printMessage(); return 0; } const std::string input = cmd.get("input"); const bool no_show = cmd.get("noshow"); const bool run_trad = cmd.get("trad"); cv::GMat in; cv::GMat blob_plates = cv::gapi::infer(in); cv::GMat blob_faces = cv::gapi::infer(in); // VehLicDetector from Open Model Zoo marks vehicles with label "1" and // license plates with label "2", filter out license plates only. cv::GArray rc_plates = custom::ParseSSD::on(blob_plates, in, 2); // Face detector produces faces only so there's no need to filter by label, // pass "-1". cv::GArray rc_faces = custom::ParseSSD::on(blob_faces, in, -1); cv::GMat out = cv::gapi::wip::draw::render3ch(in, custom::ToMosaic::on(rc_plates, rc_faces)); cv::GComputation graph(in, out); const auto plate_model_path = cmd.get("platm"); auto plate_net = cv::gapi::ie::Params { plate_model_path, // path to topology IR weights_path(plate_model_path), // path to weights cmd.get("platd"), // device specifier }; const auto face_model_path = cmd.get("facem"); auto face_net = cv::gapi::ie::Params { face_model_path, // path to topology IR weights_path(face_model_path), // path to weights cmd.get("faced"), // device specifier }; auto kernels = cv::gapi::kernels(); auto networks = cv::gapi::networks(plate_net, face_net); cv::TickMeter tm; cv::Mat out_frame; std::size_t frames = 0u; std::cout << "Reading " << input << std::endl; if (run_trad) { cv::Mat in_frame; cv::VideoCapture cap(input); cap >> in_frame; auto exec = graph.compile(cv::descr_of(in_frame), cv::compile_args(kernels, networks)); tm.start(); do { exec(in_frame, out_frame); if (!no_show) { cv::imshow("Out", out_frame); cv::waitKey(1); } frames++; } while (cap.read(in_frame)); tm.stop(); } else { auto pipeline = graph.compileStreaming(cv::compile_args(kernels, networks)); pipeline.setSource(cv::gapi::wip::make_src(input)); pipeline.start(); tm.start(); while (pipeline.pull(cv::gout(out_frame))) { frames++; if (!no_show) { cv::imshow("Out", out_frame); cv::waitKey(1); } } tm.stop(); } std::cout << "Processed " << frames << " frames" << " (" << frames / tm.getTimeSec() << " FPS)" << std::endl; return 0; }