#!/usr/bin/env python ''' CUDA-accelerated Computer Vision functions ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 as cv import os from tests_common import NewOpenCVTests, unittest class cuda_test(NewOpenCVTests): def setUp(self): super(cuda_test, self).setUp() if not cv.cuda.getCudaEnabledDeviceCount(): self.skipTest("No CUDA-capable device is detected") def test_cuda_upload_download(self): npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8) cuMat = cv.cuda_GpuMat() cuMat.upload(npMat) self.assertTrue(np.allclose(cuMat.download(), npMat)) def test_cuda_upload_download_stream(self): stream = cv.cuda_Stream() npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8) cuMat = cv.cuda_GpuMat(128,128, cv.CV_8UC3) cuMat.upload(npMat, stream) npMat2 = cuMat.download(stream=stream) stream.waitForCompletion() self.assertTrue(np.allclose(npMat2, npMat)) def test_cuda_interop(self): npMat = (np.random.random((128, 128, 3)) * 255).astype(np.uint8) cuMat = cv.cuda_GpuMat() cuMat.upload(npMat) self.assertTrue(cuMat.cudaPtr() != 0) stream = cv.cuda_Stream() self.assertTrue(stream.cudaPtr() != 0) asyncstream = cv.cuda_Stream(1) # cudaStreamNonBlocking self.assertTrue(asyncstream.cudaPtr() != 0) if __name__ == '__main__': NewOpenCVTests.bootstrap()