/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include "opencv2/core/private.cuda.hpp" using namespace cv; using namespace cv::cuda; #ifdef HAVE_CUDA namespace cv { namespace cuda { namespace device { namespace imgproc { void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, const float k_rinv[9], const float r_kinv[9], const float t[3], float scale, cudaStream_t stream); void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, const float k_rinv[9], const float r_kinv[9], float scale, cudaStream_t stream); void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, const float k_rinv[9], const float r_kinv[9], float scale, cudaStream_t stream); } }}} static void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, InputArray _T, float scale, OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null()) { CV_UNUSED(src_size); Mat K = _K.getMat(); Mat R = _R.getMat(); Mat T = _T.getMat(); CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 ); CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 ); CV_Assert( (T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32FC1 && T.isContinuous() ); Mat K_Rinv = K * R.t(); Mat R_Kinv = R * K.inv(); CV_Assert( K_Rinv.isContinuous() ); CV_Assert( R_Kinv.isContinuous() ); _map_x.create(dst_roi.size(), CV_32FC1); _map_y.create(dst_roi.size(), CV_32FC1); GpuMat map_x = _map_x.getGpuMat(); GpuMat map_y = _map_y.getGpuMat(); device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr(), R_Kinv.ptr(), T.ptr(), scale, StreamAccessor::getStream(stream)); } static void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale, OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null()) { CV_UNUSED(src_size); Mat K = _K.getMat(); Mat R = _R.getMat(); CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 ); CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 ); Mat K_Rinv = K * R.t(); Mat R_Kinv = R * K.inv(); CV_Assert( K_Rinv.isContinuous() ); CV_Assert( R_Kinv.isContinuous() ); _map_x.create(dst_roi.size(), CV_32FC1); _map_y.create(dst_roi.size(), CV_32FC1); GpuMat map_x = _map_x.getGpuMat(); GpuMat map_y = _map_y.getGpuMat(); device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr(), R_Kinv.ptr(), scale, StreamAccessor::getStream(stream)); } static void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray _K, InputArray _R, float scale, OutputArray _map_x, OutputArray _map_y, Stream& stream = Stream::Null()) { CV_UNUSED(src_size); Mat K = _K.getMat(); Mat R = _R.getMat(); CV_Assert( K.size() == Size(3,3) && K.type() == CV_32FC1 ); CV_Assert( R.size() == Size(3,3) && R.type() == CV_32FC1 ); Mat K_Rinv = K * R.t(); Mat R_Kinv = R * K.inv(); CV_Assert( K_Rinv.isContinuous() ); CV_Assert( R_Kinv.isContinuous() ); _map_x.create(dst_roi.size(), CV_32FC1); _map_y.create(dst_roi.size(), CV_32FC1); GpuMat map_x = _map_x.getGpuMat(); GpuMat map_y = _map_y.getGpuMat(); device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr(), R_Kinv.ptr(), scale, StreamAccessor::getStream(stream)); } #endif Rect cv::detail::PlaneWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap) { return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32F), xmap, ymap); } Rect cv::detail::PlaneWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, cuda::GpuMat & xmap, cuda::GpuMat & ymap) { #ifndef HAVE_CUDA CV_UNUSED(src_size); CV_UNUSED(K); CV_UNUSED(R); CV_UNUSED(T); CV_UNUSED(xmap); CV_UNUSED(ymap); throw_no_cuda(); #else projector_.setCameraParams(K, R, T); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); ::buildWarpPlaneMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)), K, R, T, projector_.scale, xmap, ymap); return Rect(dst_tl, dst_br); #endif } Point cv::detail::PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode, cuda::GpuMat & dst) { return warp(src, K, R, Mat::zeros(3, 1, CV_32F), interp_mode, border_mode, dst); } Point cv::detail::PlaneWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode, cuda::GpuMat & dst) { #ifndef HAVE_OPENCV_CUDAWARPING CV_UNUSED(src); CV_UNUSED(K); CV_UNUSED(R); CV_UNUSED(T); CV_UNUSED(interp_mode); CV_UNUSED(border_mode); CV_UNUSED(dst); throw_no_cuda(); #else Rect dst_roi = buildMaps(src.size(), K, R, T, d_xmap_, d_ymap_); dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode); return dst_roi.tl(); #endif } Rect cv::detail::SphericalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap) { #ifndef HAVE_CUDA CV_UNUSED(src_size); CV_UNUSED(K); CV_UNUSED(R); CV_UNUSED(xmap); CV_UNUSED(ymap); throw_no_cuda(); #else projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); ::buildWarpSphericalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)), K, R, projector_.scale, xmap, ymap); return Rect(dst_tl, dst_br); #endif } Point cv::detail::SphericalWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode, cuda::GpuMat & dst) { #ifndef HAVE_OPENCV_CUDAWARPING CV_UNUSED(src); CV_UNUSED(K); CV_UNUSED(R); CV_UNUSED(interp_mode); CV_UNUSED(border_mode); CV_UNUSED(dst); throw_no_cuda(); #else Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_); dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode); return dst_roi.tl(); #endif } Rect cv::detail::CylindricalWarperGpu::buildMaps(Size src_size, InputArray K, InputArray R, cuda::GpuMat & xmap, cuda::GpuMat & ymap) { #ifndef HAVE_CUDA CV_UNUSED(src_size); CV_UNUSED(K); CV_UNUSED(R); CV_UNUSED(xmap); CV_UNUSED(ymap); throw_no_cuda(); #else projector_.setCameraParams(K, R); Point dst_tl, dst_br; detectResultRoi(src_size, dst_tl, dst_br); ::buildWarpCylindricalMaps(src_size, Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1)), K, R, projector_.scale, xmap, ymap); return Rect(dst_tl, dst_br); #endif } Point cv::detail::CylindricalWarperGpu::warp(const cuda::GpuMat & src, InputArray K, InputArray R, int interp_mode, int border_mode, cuda::GpuMat & dst) { #ifndef HAVE_OPENCV_CUDAWARPING CV_UNUSED(src); CV_UNUSED(K); CV_UNUSED(R); CV_UNUSED(interp_mode); CV_UNUSED(border_mode); CV_UNUSED(dst); throw_no_cuda(); #else Rect dst_roi = buildMaps(src.size(), K, R, d_xmap_, d_ymap_); dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type()); cuda::remap(src, dst, d_xmap_, d_ymap_, interp_mode, border_mode); return dst_roi.tl(); #endif }