import argparse import numpy as np import cv2 as cv def str2bool(v): if v.lower() in ['on', 'yes', 'true', 'y', 't']: return True elif v.lower() in ['off', 'no', 'false', 'n', 'f']: return False else: raise NotImplementedError parser = argparse.ArgumentParser() parser.add_argument('--input', '-i', type=str, help='Path to the input image.') parser.add_argument('--model', '-m', type=str, default='yunet.onnx', help='Path to the model. Download the model at https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.') parser.add_argument('--score_threshold', type=float, default=0.9, help='Filtering out faces of score < score_threshold.') parser.add_argument('--nms_threshold', type=float, default=0.3, help='Suppress bounding boxes of iou >= nms_threshold.') parser.add_argument('--top_k', type=int, default=5000, help='Keep top_k bounding boxes before NMS.') parser.add_argument('--save', '-s', type=str2bool, default=False, help='Set true to save results. This flag is invalid when using camera.') parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') args = parser.parse_args() def visualize(input, faces, thickness=2): output = input.copy() if faces[1] is not None: for idx, face in enumerate(faces[1]): print('Face {}, top-left coordinates: ({:.0f}, {:.0f}), box width: {:.0f}, box height {:.0f}, score: {:.2f}'.format(idx, face[0], face[1], face[2], face[3], face[-1])) coords = face[:-1].astype(np.int32) cv.rectangle(output, (coords[0], coords[1]), (coords[0]+coords[2], coords[1]+coords[3]), (0, 255, 0), 2) cv.circle(output, (coords[4], coords[5]), 2, (255, 0, 0), 2) cv.circle(output, (coords[6], coords[7]), 2, (0, 0, 255), 2) cv.circle(output, (coords[8], coords[9]), 2, (0, 255, 0), 2) cv.circle(output, (coords[10], coords[11]), 2, (255, 0, 255), 2) cv.circle(output, (coords[12], coords[13]), 2, (0, 255, 255), 2) return output if __name__ == '__main__': # Instantiate FaceDetectorYN detector = cv.FaceDetectorYN.create( args.model, "", (320, 320), args.score_threshold, args.nms_threshold, args.top_k ) # If input is an image if args.input is not None: image = cv.imread(args.input) # Set input size before inference detector.setInputSize((image.shape[1], image.shape[0])) # Inference faces = detector.detect(image) # Draw results on the input image result = visualize(image, faces) # Save results if save is true if args.save: print('Resutls saved to result.jpg\n') cv.imwrite('result.jpg', result) # Visualize results in a new window if args.vis: cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) cv.imshow(args.input, result) cv.waitKey(0) else: # Omit input to call default camera deviceId = 0 cap = cv.VideoCapture(deviceId) frameWidth = int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) frameHeight = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) detector.setInputSize([frameWidth, frameHeight]) tm = cv.TickMeter() while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: print('No frames grabbed!') break # Inference tm.start() faces = detector.detect(frame) # faces is a tuple tm.stop() # Draw results on the input image frame = visualize(frame, faces) cv.putText(frame, 'FPS: {}'.format(tm.getFPS()), (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) # Visualize results in a new Window cv.imshow('Live', frame) tm.reset()