/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { static const double numerical_precision = 100.; TEST(Photo_NPR_EdgePreserveSmoothing_RecursiveFilter, regression) { string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/"; string original_path = folder + "test1.png"; Mat source = imread(original_path, IMREAD_COLOR); ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path; Mat result; edgePreservingFilter(source,result,1); Mat reference = imread(folder + "smoothened_RF_reference.png"); double psnr = cvtest::PSNR(reference, result); EXPECT_GT(psnr, 60.0); } TEST(Photo_NPR_EdgePreserveSmoothing_NormConvFilter, regression) { string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/"; string original_path = folder + "test1.png"; Mat source = imread(original_path, IMREAD_COLOR); ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path; Mat result; edgePreservingFilter(source,result,2); Mat reference = imread(folder + "smoothened_NCF_reference.png"); double psnr = cvtest::PSNR(reference, result); EXPECT_GT(psnr, 60.0); } TEST(Photo_NPR_DetailEnhance, regression) { string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/"; string original_path = folder + "test1.png"; Mat source = imread(original_path, IMREAD_COLOR); ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path; Mat result; detailEnhance(source,result); Mat reference = imread(folder + "detail_enhanced_reference.png"); double psnr = cvtest::PSNR(reference, result); EXPECT_GT(psnr, 60.0); } TEST(Photo_NPR_PencilSketch, regression) { string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/"; string original_path = folder + "test1.png"; Mat source = imread(original_path, IMREAD_COLOR); ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path; Mat pencil_result, color_pencil_result; pencilSketch(source,pencil_result, color_pencil_result, 10, 0.1f, 0.03f); Mat pencil_reference = imread(folder + "pencil_sketch_reference.png", 0 /* == grayscale*/); double pencil_error = cvtest::norm(pencil_reference, pencil_result, NORM_L1); EXPECT_LE(pencil_error, numerical_precision); Mat color_pencil_reference = imread(folder + "color_pencil_sketch_reference.png"); double color_pencil_error = cvtest::norm(color_pencil_reference, color_pencil_result, NORM_L1); EXPECT_LE(color_pencil_error, numerical_precision); } TEST(Photo_NPR_Stylization, regression) { string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/"; string original_path = folder + "test1.png"; Mat source = imread(original_path, IMREAD_COLOR); ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path; Mat result; stylization(source,result); Mat stylized_reference = imread(folder + "stylized_reference.png"); double stylized_error = cvtest::norm(stylized_reference, result, NORM_L1); EXPECT_LE(stylized_error, numerical_precision); } }} // namespace