# Tencent is pleased to support the open source community by making ncnn available. # # Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import sys import cv2 import numpy as np import ncnn from ncnn.model_zoo import get_model def draw_detection_objects_seg(image, class_names, objects, mat_map): color = [128, 255, 128, 244, 35, 232] color_count = len(color) for obj in objects: print( "%d = %.5f at %.2f %.2f %.2f x %.2f\n" % (obj.label, obj.prob, obj.rect.x, obj.rect.y, obj.rect.w, obj.rect.h) ) cv2.rectangle( image, (int(obj.rect.x), int(obj.rect.y)), (int(obj.rect.x + obj.rect.w), int(obj.rect.y + obj.rect.h)), (255, 0, 0), ) text = "%s %.1f%%" % (class_names[int(obj.label)], obj.prob * 100) label_size, baseLine = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) x = obj.rect.x y = obj.rect.y - label_size[1] - baseLine if y < 0: y = 0 if x + label_size[0] > image.shape[1]: x = image.shape[1] - label_size[0] cv2.rectangle( image, (int(x), int(y)), (int(x + label_size[0]), int(y + label_size[1] + baseLine)), (255, 255, 255), -1, ) cv2.putText( image, text, (int(x), int(y + label_size[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), ) width = mat_map.w height = mat_map.h size = mat_map.c img_index2 = 0 threshold = 0.45 ptr2 = np.array(mat_map) for i in range(height): ptr1 = image[i].flatten() img_index1 = 0 for j in range(width): maxima = threshold index = -1 for c in range(size): # const float* ptr3 = ptr2 + c*width*height ptr3 = ptr2[c].flatten() if ptr3[img_index2] > maxima: maxima = ptr3[img_index2] index = c if index > -1: color_index = (index) * 3 if color_index < color_count: b = color[color_index] g = color[color_index + 1] r = color[color_index + 2] ptr1[img_index1] = b / 2 + ptr1[img_index1] / 2 ptr1[img_index1 + 1] = g / 2 + ptr1[img_index1 + 1] / 2 ptr1[img_index1 + 2] = r / 2 + ptr1[img_index1 + 2] / 2 img_index1 += 3 img_index2 += 1 image[i] = ptr1.reshape(image[i].shape) cv2.imshow("image", image) cv2.waitKey(0) if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: %s [imagepath]\n" % (sys.argv[0])) sys.exit(0) imagepath = sys.argv[1] m = cv2.imread(imagepath) if m is None: print("cv2.imread %s failed\n" % (imagepath)) sys.exit(0) net = get_model("peleenet_ssd", num_threads=4, use_gpu=True) objects, seg_out = net(m) draw_detection_objects_seg(m, net.class_names, objects, seg_out)