/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2014, Itseez, Inc, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { #ifndef DEBUG_IMAGES #define DEBUG_IMAGES 0 #endif //#define GENERATE_DATA // generate data in debug mode via CPU code path (without IPP / OpenCL and other accelerators) using namespace cv; using namespace std; static string getTestCaseName(const string& picture_name, double minDist, double edgeThreshold, double accumThreshold, int minRadius, int maxRadius) { string results_name = cv::format("circles_%s_%.0f_%.0f_%.0f_%d_%d", picture_name.c_str(), minDist, edgeThreshold, accumThreshold, minRadius, maxRadius); string temp(results_name); size_t pos = temp.find_first_of("\\/."); while (pos != string::npos) { temp.replace(pos, 1, "_"); pos = temp.find_first_of("\\/."); } return temp; } #if DEBUG_IMAGES static void highlightCircles(const string& imagePath, const vector& circles, const string& outputImagePath) { Mat imgDebug = imread(imagePath, IMREAD_COLOR); const Scalar yellow(0, 255, 255); for (vector::const_iterator iter = circles.begin(); iter != circles.end(); ++iter) { const Vec3f& circle = *iter; float x = circle[0]; float y = circle[1]; float r = max(circle[2], 2.0f); cv::circle(imgDebug, Point(int(x), int(y)), int(r), yellow); } imwrite(outputImagePath, imgDebug); } #endif typedef tuple Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t; class HoughCirclesTestFixture : public testing::TestWithParam { string picture_name; double minDist; double edgeThreshold; double accumThreshold; int minRadius; int maxRadius; public: HoughCirclesTestFixture() { picture_name = get<0>(GetParam()); minDist = get<1>(GetParam()); edgeThreshold = get<2>(GetParam()); accumThreshold = get<3>(GetParam()); minRadius = get<4>(GetParam()); maxRadius = get<5>(GetParam()); } HoughCirclesTestFixture(const string& picture, double minD, double edge, double accum, int minR, int maxR) : picture_name(picture), minDist(minD), edgeThreshold(edge), accumThreshold(accum), minRadius(minR), maxRadius(maxR) { } template void run_test(const char* xml_name) { string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius); string filename = cvtest::TS::ptr()->get_data_path() + picture_name; Mat src = imread(filename, IMREAD_GRAYSCALE); EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename; GaussianBlur(src, src, Size(9, 9), 2, 2); vector circles; const double dp = 1.0; HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius); string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/"; #if DEBUG_IMAGES highlightCircles(filename, circles, imgProc + test_case_name + ".png"); #endif string xml = imgProc + xml_name; #ifdef GENERATE_DATA { FileStorage fs(xml, FileStorage::READ); ASSERT_TRUE(!fs.isOpened() || fs[test_case_name].empty()); } { FileStorage fs(xml, FileStorage::APPEND); EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml; fs << test_case_name << circles; } #else FileStorage fs(xml, FileStorage::READ); FileNode node = fs[test_case_name]; ASSERT_FALSE(node.empty()) << "Missing test data: " << test_case_name << std::endl << "XML: " << xml; vector exp_circles; read(fs[test_case_name], exp_circles, vector()); fs.release(); EXPECT_EQ(exp_circles.size(), circles.size()); #endif } }; TEST_P(HoughCirclesTestFixture, regression) { run_test("HoughCircles.xml"); } TEST_P(HoughCirclesTestFixture, regression4f) { run_test("HoughCircles4f.xml"); } INSTANTIATE_TEST_CASE_P(ImgProc, HoughCirclesTestFixture, testing::Combine( // picture_name: testing::Values("imgproc/stuff.jpg"), // minDist: testing::Values(20), // edgeThreshold: testing::Values(20), // accumThreshold: testing::Values(30), // minRadius: testing::Values(20), // maxRadius: testing::Values(200) )); class HoughCirclesTest : public testing::TestWithParam { protected: HoughModes method; public: HoughCirclesTest() { method = GetParam(); } }; TEST_P(HoughCirclesTest, DefaultMaxRadius) { string picture_name = "imgproc/stuff.jpg"; string filename = cvtest::TS::ptr()->get_data_path() + picture_name; Mat src = imread(filename, IMREAD_GRAYSCALE); EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename; GaussianBlur(src, src, Size(9, 9), 2, 2); double dp = 1.0; double minDist = 20.0; double edgeThreshold = 20.0; double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.; int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20; int maxRadius = 0; vector circles; vector circles4f; HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius); HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius); #if DEBUG_IMAGES string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/"; highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png"); #endif int maxDimension = std::max(src.rows, src.cols); if(method == HOUGH_GRADIENT_ALT) { EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles"; } else { EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles"; } for (size_t i = 0; i < circles.size(); ++i) { EXPECT_GE(circles[i][2], minRadius) << "Radius should be >= minRadius"; EXPECT_LE(circles[i][2], maxDimension) << "Radius should be <= max image dimension"; } } TEST_P(HoughCirclesTest, CentersOnly) { string picture_name = "imgproc/stuff.jpg"; string filename = cvtest::TS::ptr()->get_data_path() + picture_name; Mat src = imread(filename, IMREAD_GRAYSCALE); EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename; GaussianBlur(src, src, Size(9, 9), 2, 2); double dp = 1.0; double minDist = 20.0; double edgeThreshold = 20.0; double param2 = method == HOUGH_GRADIENT_ALT ? 0.9 : 30.; int minRadius = method == HOUGH_GRADIENT_ALT ? 10 : 20; int maxRadius = -1; vector circles; vector circles4f; HoughCircles(src, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius); HoughCircles(src, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius); #if DEBUG_IMAGES string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/"; highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png"); #endif if(method == HOUGH_GRADIENT_ALT) { EXPECT_EQ(circles.size(), size_t(3)) << "Should find 3 circles"; } else { EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles"; } for (size_t i = 0; i < circles.size(); ++i) { if( method == HOUGH_GRADIENT ) { EXPECT_EQ(circles[i][2], 0.0f) << "Did not ask for radius"; } EXPECT_EQ(circles[i][0], circles4f[i][0]); EXPECT_EQ(circles[i][1], circles4f[i][1]); EXPECT_EQ(circles[i][2], circles4f[i][2]); } } TEST_P(HoughCirclesTest, ManySmallCircles) { string picture_name = "imgproc/beads.jpg"; string filename = cvtest::TS::ptr()->get_data_path() + picture_name; Mat src = imread(filename, IMREAD_GRAYSCALE); EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename; const double dp = method == HOUGH_GRADIENT_ALT ? 1.5 : 1.0; double minDist = 10; double edgeThreshold = 90; double accumThreshold = 11; double minCos2 = 0.85; double param2 = method == HOUGH_GRADIENT_ALT ? minCos2 : accumThreshold; int minRadius = 7; int maxRadius = 18; int ncircles_min = method == HOUGH_GRADIENT_ALT ? 2000 : 3000; Mat src_smooth; if( method == HOUGH_GRADIENT_ALT ) GaussianBlur(src, src_smooth, Size(7, 7), 1.5, 1.5); else src.copyTo(src_smooth); vector circles; vector circles4f; HoughCircles(src_smooth, circles, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius); HoughCircles(src_smooth, circles4f, method, dp, minDist, edgeThreshold, param2, minRadius, maxRadius); #if DEBUG_IMAGES string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/"; string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius); highlightCircles(filename, circles, imgProc + test_case_name + ".png"); #endif EXPECT_GT(circles.size(), size_t(ncircles_min)) << "Should find a lot of circles"; EXPECT_EQ(circles.size(), circles4f.size()); } INSTANTIATE_TEST_CASE_P(HoughGradient, HoughCirclesTest, testing::Values(HOUGH_GRADIENT)); INSTANTIATE_TEST_CASE_P(HoughGradientAlt, HoughCirclesTest, testing::Values(HOUGH_GRADIENT_ALT)); }} // namespace