//warning number '5033' not a valid compiler warning in vc12 #if defined(_MSC_VER) && (_MSC_VER > 1800) // eliminating duplicated round() declaration #define HAVE_ROUND 1 #pragma warning(push) #pragma warning(disable:5033) // 'register' is no longer a supported storage class #endif // #define CVPY_DYNAMIC_INIT // #define Py_DEBUG #if defined(CVPY_DYNAMIC_INIT) && !defined(Py_DEBUG) # define Py_LIMITED_API 0x03030000 #endif #include #include #include #if PY_MAJOR_VERSION < 3 #undef CVPY_DYNAMIC_INIT #else #define CV_PYTHON_3 1 #endif #if defined(_MSC_VER) && (_MSC_VER > 1800) #pragma warning(pop) #endif #define MODULESTR "cv2" #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION #include #include "opencv2/opencv_modules.hpp" #include "opencv2/core.hpp" #include "opencv2/core/utils/configuration.private.hpp" #include "opencv2/core/utils/logger.hpp" #include "opencv2/core/utils/tls.hpp" #include "pyopencv_generated_include.h" #include "opencv2/core/types_c.h" #include "pycompat.hpp" #include #include // std::enable_if #define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred()) static PyObject* opencv_error = NULL; static PyTypeObject* pyopencv_Mat_TypePtr = nullptr; class ArgInfo { public: const char* name; bool outputarg; // more fields may be added if necessary ArgInfo(const char* name_, bool outputarg_) : name(name_), outputarg(outputarg_) {} private: ArgInfo(const ArgInfo&) = delete; ArgInfo& operator=(const ArgInfo&) = delete; }; template // TEnable is used for SFINAE checks struct PyOpenCV_Converter { //static inline bool to(PyObject* obj, T& p, const ArgInfo& info); //static inline PyObject* from(const T& src); }; // exception-safe pyopencv_to template static bool pyopencv_to_safe(PyObject* obj, _Tp& value, const ArgInfo& info) { try { return pyopencv_to(obj, value, info); } catch (const std::exception &e) { PyErr_SetString(opencv_error, cv::format("Conversion error: %s, what: %s", info.name, e.what()).c_str()); return false; } catch (...) { PyErr_SetString(opencv_error, cv::format("Conversion error: %s", info.name).c_str()); return false; } } template static bool pyopencv_to(PyObject* obj, T& p, const ArgInfo& info) { return PyOpenCV_Converter::to(obj, p, info); } template static PyObject* pyopencv_from(const T& src) { return PyOpenCV_Converter::from(src); } static bool isPythonBindingsDebugEnabled() { static bool param_debug = cv::utils::getConfigurationParameterBool("OPENCV_PYTHON_DEBUG", false); return param_debug; } static void emit_failmsg(PyObject * exc, const char *msg) { static bool param_debug = isPythonBindingsDebugEnabled(); if (param_debug) { CV_LOG_WARNING(NULL, "Bindings conversion failed: " << msg); } PyErr_SetString(exc, msg); } static int failmsg(const char *fmt, ...) { char str[1000]; va_list ap; va_start(ap, fmt); vsnprintf(str, sizeof(str), fmt, ap); va_end(ap); emit_failmsg(PyExc_TypeError, str); return 0; } static PyObject* failmsgp(const char *fmt, ...) { char str[1000]; va_list ap; va_start(ap, fmt); vsnprintf(str, sizeof(str), fmt, ap); va_end(ap); emit_failmsg(PyExc_TypeError, str); return 0; } class PyAllowThreads { public: PyAllowThreads() : _state(PyEval_SaveThread()) {} ~PyAllowThreads() { PyEval_RestoreThread(_state); } private: PyThreadState* _state; }; class PyEnsureGIL { public: PyEnsureGIL() : _state(PyGILState_Ensure()) {} ~PyEnsureGIL() { PyGILState_Release(_state); } private: PyGILState_STATE _state; }; /** * Light weight RAII wrapper for `PyObject*` owning references. * In comparisson to C++11 `std::unique_ptr` with custom deleter, it provides * implicit conversion functions that might be useful to initialize it with * Python functions those returns owning references through the `PyObject**` * e.g. `PyErr_Fetch` or directly pass it to functions those want to borrow * reference to object (doesn't extend object lifetime) e.g. `PyObject_Str`. */ class PySafeObject { public: PySafeObject() : obj_(NULL) {} explicit PySafeObject(PyObject* obj) : obj_(obj) {} ~PySafeObject() { Py_CLEAR(obj_); } operator PyObject*() { return obj_; } operator PyObject**() { return &obj_; } PyObject* release() { PyObject* obj = obj_; obj_ = NULL; return obj; } private: PyObject* obj_; // Explicitly disable copy operations PySafeObject(const PySafeObject*); // = delete PySafeObject& operator=(const PySafeObject&); // = delete }; static void pyRaiseCVException(const cv::Exception &e) { PyObject_SetAttrString(opencv_error, "file", PyString_FromString(e.file.c_str())); PyObject_SetAttrString(opencv_error, "func", PyString_FromString(e.func.c_str())); PyObject_SetAttrString(opencv_error, "line", PyInt_FromLong(e.line)); PyObject_SetAttrString(opencv_error, "code", PyInt_FromLong(e.code)); PyObject_SetAttrString(opencv_error, "msg", PyString_FromString(e.msg.c_str())); PyObject_SetAttrString(opencv_error, "err", PyString_FromString(e.err.c_str())); PyErr_SetString(opencv_error, e.what()); } #define ERRWRAP2(expr) \ try \ { \ PyAllowThreads allowThreads; \ expr; \ } \ catch (const cv::Exception &e) \ { \ pyRaiseCVException(e); \ return 0; \ } \ catch (const std::exception &e) \ { \ PyErr_SetString(opencv_error, e.what()); \ return 0; \ } \ catch (...) \ { \ PyErr_SetString(opencv_error, "Unknown C++ exception from OpenCV code"); \ return 0; \ } using namespace cv; namespace { template NPY_TYPES asNumpyType() { return NPY_OBJECT; } template<> NPY_TYPES asNumpyType() { return NPY_BOOL; } #define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \ template<> \ NPY_TYPES asNumpyType() \ { \ return NPY_##dst; \ } \ template<> \ NPY_TYPES asNumpyType() \ { \ return NPY_U##dst; \ } CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8); CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16); CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32); CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64); #undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION template<> NPY_TYPES asNumpyType() { return NPY_FLOAT; } template<> NPY_TYPES asNumpyType() { return NPY_DOUBLE; } template PyArray_Descr* getNumpyTypeDescriptor() { return PyArray_DescrFromType(asNumpyType()); } template <> PyArray_Descr* getNumpyTypeDescriptor() { #if SIZE_MAX == ULONG_MAX return PyArray_DescrFromType(NPY_ULONG); #elif SIZE_MAX == ULLONG_MAX return PyArray_DescrFromType(NPY_ULONGLONG); #else return PyArray_DescrFromType(NPY_UINT); #endif } template bool isRepresentable(U value) { return (std::numeric_limits::min() <= value) && (value <= std::numeric_limits::max()); } template bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to) { return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0; } template<> bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to) { PyArray_Descr* from = PyArray_DescrFromScalar(obj); if (PyArray_CanCastTo(from, to)) { return true; } else { // False negative scenarios: // - Signed input is positive so it can be safely cast to unsigned output // - Input has wider limits but value is representable within output limits // - All the above if (PyDataType_ISSIGNED(from)) { int64_t input = 0; PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor()); return (input >= 0) && isRepresentable(static_cast(input)); } else { uint64_t input = 0; PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor()); return isRepresentable(input); } return false; } } template bool parseNumpyScalar(PyObject* obj, T& value) { if (PyArray_CheckScalar(obj)) { // According to the numpy documentation: // There are 21 statically-defined PyArray_Descr objects for the built-in data-types // So descriptor pointer is not owning. PyArray_Descr* to = getNumpyTypeDescriptor(); if (canBeSafelyCasted(obj, to)) { PyArray_CastScalarToCtype(obj, &value, to); return true; } } return false; } TLSData > conversionErrorsTLS; inline void pyPrepareArgumentConversionErrorsStorage(std::size_t size) { std::vector& conversionErrors = conversionErrorsTLS.getRef(); conversionErrors.clear(); conversionErrors.reserve(size); } void pyRaiseCVOverloadException(const std::string& functionName) { const std::vector& conversionErrors = conversionErrorsTLS.getRef(); const std::size_t conversionErrorsCount = conversionErrors.size(); if (conversionErrorsCount > 0) { // In modern std libraries small string optimization is used = no dynamic memory allocations, // but it can be applied only for string with length < 18 symbols (in GCC) const std::string bullet = "\n - "; // Estimate required buffer size - save dynamic memory allocations = faster std::size_t requiredBufferSize = bullet.size() * conversionErrorsCount; for (std::size_t i = 0; i < conversionErrorsCount; ++i) { requiredBufferSize += conversionErrors[i].size(); } // Only string concatenation is required so std::string is way faster than // std::ostringstream std::string errorMessage("Overload resolution failed:"); errorMessage.reserve(errorMessage.size() + requiredBufferSize); for (std::size_t i = 0; i < conversionErrorsCount; ++i) { errorMessage += bullet; errorMessage += conversionErrors[i]; } cv::Exception exception(CV_StsBadArg, errorMessage, functionName, "", -1); pyRaiseCVException(exception); } else { cv::Exception exception(CV_StsInternal, "Overload resolution failed, but no errors reported", functionName, "", -1); pyRaiseCVException(exception); } } void pyPopulateArgumentConversionErrors() { if (PyErr_Occurred()) { PySafeObject exception_type; PySafeObject exception_value; PySafeObject exception_traceback; PyErr_Fetch(exception_type, exception_value, exception_traceback); PyErr_NormalizeException(exception_type, exception_value, exception_traceback); PySafeObject exception_message(PyObject_Str(exception_value)); std::string message; getUnicodeString(exception_message, message); #ifdef CV_CXX11 conversionErrorsTLS.getRef().push_back(std::move(message)); #else conversionErrorsTLS.getRef().push_back(message); #endif } } struct SafeSeqItem { PyObject * item; SafeSeqItem(PyObject *obj, size_t idx) { item = PySequence_GetItem(obj, idx); } ~SafeSeqItem() { Py_XDECREF(item); } private: SafeSeqItem(const SafeSeqItem&); // = delete SafeSeqItem& operator=(const SafeSeqItem&); // = delete }; template class RefWrapper { public: RefWrapper(T& item) : item_(item) {} T& get() CV_NOEXCEPT { return item_; } private: T& item_; }; // In order to support this conversion on 3.x branch - use custom reference_wrapper // and C-style array instead of std::array template bool parseSequence(PyObject* obj, RefWrapper (&value)[N], const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s'. Input argument doesn't provide sequence " "protocol", info.name); return false; } const std::size_t sequenceSize = PySequence_Size(obj); if (sequenceSize != N) { failmsg("Can't parse '%s'. Expected sequence length %lu, got %lu", info.name, N, sequenceSize); return false; } for (std::size_t i = 0; i < N; ++i) { SafeSeqItem seqItem(obj, i); if (!pyopencv_to(seqItem.item, value[i].get(), info)) { failmsg("Can't parse '%s'. Sequence item with index %lu has a " "wrong type", info.name, i); return false; } } return true; } } // namespace namespace traits { template struct BooleanConstant { static const bool value = Value; typedef BooleanConstant type; }; typedef BooleanConstant TrueType; typedef BooleanConstant FalseType; template struct VoidType { typedef void type; }; template struct IsRepresentableAsMatDataType : FalseType { }; template struct IsRepresentableAsMatDataType::channel_type>::type> : TrueType { }; } // namespace traits typedef std::vector vector_uchar; typedef std::vector vector_char; typedef std::vector vector_int; typedef std::vector vector_float; typedef std::vector vector_double; typedef std::vector vector_size_t; typedef std::vector vector_Point; typedef std::vector vector_Point2f; typedef std::vector vector_Point3f; typedef std::vector vector_Size; typedef std::vector vector_Vec2f; typedef std::vector vector_Vec3f; typedef std::vector vector_Vec4f; typedef std::vector vector_Vec6f; typedef std::vector vector_Vec4i; typedef std::vector vector_Rect; typedef std::vector vector_Rect2d; typedef std::vector vector_RotatedRect; typedef std::vector vector_KeyPoint; typedef std::vector vector_Mat; typedef std::vector > vector_vector_Mat; typedef std::vector vector_UMat; typedef std::vector vector_DMatch; typedef std::vector vector_String; typedef std::vector vector_string; typedef std::vector vector_Scalar; typedef std::vector > vector_vector_char; typedef std::vector > vector_vector_Point; typedef std::vector > vector_vector_Point2f; typedef std::vector > vector_vector_Point3f; typedef std::vector > vector_vector_DMatch; typedef std::vector > vector_vector_KeyPoint; class NumpyAllocator : public MatAllocator { public: NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); } ~NumpyAllocator() {} UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const { UMatData* u = new UMatData(this); u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o); npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o); for( int i = 0; i < dims - 1; i++ ) step[i] = (size_t)_strides[i]; step[dims-1] = CV_ELEM_SIZE(type); u->size = sizes[0]*step[0]; u->userdata = o; return u; } UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const CV_OVERRIDE { if( data != 0 ) { // issue #6969: CV_Error(Error::StsAssert, "The data should normally be NULL!"); // probably this is safe to do in such extreme case return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags); } PyEnsureGIL gil; int depth = CV_MAT_DEPTH(type); int cn = CV_MAT_CN(type); const int f = (int)(sizeof(size_t)/8); int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE : depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT : depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT : depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT; int i, dims = dims0; cv::AutoBuffer _sizes(dims + 1); for( i = 0; i < dims; i++ ) _sizes[i] = sizes[i]; if( cn > 1 ) _sizes[dims++] = cn; PyObject* o = PyArray_SimpleNew(dims, _sizes.data(), typenum); if(!o) CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims)); return allocate(o, dims0, sizes, type, step); } bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE { return stdAllocator->allocate(u, accessFlags, usageFlags); } void deallocate(UMatData* u) const CV_OVERRIDE { if(!u) return; PyEnsureGIL gil; CV_Assert(u->urefcount >= 0); CV_Assert(u->refcount >= 0); if(u->refcount == 0) { PyObject* o = (PyObject*)u->userdata; Py_XDECREF(o); delete u; } } const MatAllocator* stdAllocator; }; NumpyAllocator g_numpyAllocator; enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 }; static bool isBool(PyObject* obj) CV_NOEXCEPT { return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj); } template static std::string pycv_dumpArray(const T* arr, int n) { std::ostringstream out; out << "["; for (int i = 0; i < n; ++i) out << " " << arr[i]; out << " ]"; return out.str(); } // special case, when the converter needs full ArgInfo structure static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info) { if(!o || o == Py_None) { if( !m.data ) m.allocator = &g_numpyAllocator; return true; } if( PyInt_Check(o) ) { double v[] = {static_cast(PyInt_AsLong((PyObject*)o)), 0., 0., 0.}; m = Mat(4, 1, CV_64F, v).clone(); return true; } if( PyFloat_Check(o) ) { double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.}; m = Mat(4, 1, CV_64F, v).clone(); return true; } if( PyTuple_Check(o) ) { int i, sz = (int)PyTuple_Size((PyObject*)o); m = Mat(sz, 1, CV_64F); for( i = 0; i < sz; i++ ) { PyObject* oi = PyTuple_GetItem(o, i); if( PyInt_Check(oi) ) m.at(i) = (double)PyInt_AsLong(oi); else if( PyFloat_Check(oi) ) m.at(i) = (double)PyFloat_AsDouble(oi); else { failmsg("%s is not a numerical tuple", info.name); m.release(); return false; } } return true; } if( !PyArray_Check(o) ) { failmsg("%s is not a numpy array, neither a scalar", info.name); return false; } PyArrayObject* oarr = (PyArrayObject*) o; bool needcopy = false, needcast = false; int typenum = PyArray_TYPE(oarr), new_typenum = typenum; int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S : typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S : typenum == NPY_INT ? CV_32S : typenum == NPY_INT32 ? CV_32S : typenum == NPY_FLOAT ? CV_32F : typenum == NPY_DOUBLE ? CV_64F : -1; if( type < 0 ) { if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG ) { needcopy = needcast = true; new_typenum = NPY_INT; type = CV_32S; } else { failmsg("%s data type = %d is not supported", info.name, typenum); return false; } } #ifndef CV_MAX_DIM const int CV_MAX_DIM = 32; #endif int ndims = PyArray_NDIM(oarr); if(ndims >= CV_MAX_DIM) { failmsg("%s dimensionality (=%d) is too high", info.name, ndims); return false; } size_t elemsize = CV_ELEM_SIZE1(type); const npy_intp* _sizes = PyArray_DIMS(oarr); const npy_intp* _strides = PyArray_STRIDES(oarr); CV_LOG_DEBUG(NULL, "Incoming ndarray '" << info.name << "': ndims=" << ndims << " _sizes=" << pycv_dumpArray(_sizes, ndims) << " _strides=" << pycv_dumpArray(_strides, ndims)); bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX; if (pyopencv_Mat_TypePtr && PyObject_TypeCheck(o, pyopencv_Mat_TypePtr)) { bool wrapChannels = false; PyObject* pyobj_wrap_channels = PyObject_GetAttrString(o, "wrap_channels"); if (pyobj_wrap_channels) { if (!pyopencv_to_safe(pyobj_wrap_channels, wrapChannels, ArgInfo("cv.Mat.wrap_channels", 0))) { // TODO extra message Py_DECREF(pyobj_wrap_channels); return false; } Py_DECREF(pyobj_wrap_channels); } ismultichannel = wrapChannels && ndims >= 1; } for( int i = ndims-1; i >= 0 && !needcopy; i-- ) { // these checks handle cases of // a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases // b) transposed arrays, where _strides[] elements go in non-descending order // c) flipped arrays, where some of _strides[] elements are negative // the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) || (i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) ) needcopy = true; } if (ismultichannel) { int channels = ndims >= 1 ? (int)_sizes[ndims - 1] : 1; if (channels > CV_CN_MAX) { failmsg("%s unable to wrap channels, too high (%d > CV_CN_MAX=%d)", info.name, (int)channels, (int)CV_CN_MAX); return false; } ndims--; type |= CV_MAKETYPE(0, channels); if (ndims >= 1 && _strides[ndims - 1] != (npy_intp)elemsize*_sizes[ndims]) needcopy = true; } if (needcopy) { if (info.outputarg) { failmsg("Layout of the output array %s is incompatible with cv::Mat", info.name); return false; } if( needcast ) { o = PyArray_Cast(oarr, new_typenum); oarr = (PyArrayObject*) o; } else { oarr = PyArray_GETCONTIGUOUS(oarr); o = (PyObject*) oarr; } _strides = PyArray_STRIDES(oarr); } int size[CV_MAX_DIM+1] = {}; size_t step[CV_MAX_DIM+1] = {}; // Normalize strides in case NPY_RELAXED_STRIDES is set size_t default_step = elemsize; for ( int i = ndims - 1; i >= 0; --i ) { size[i] = (int)_sizes[i]; if ( size[i] > 1 ) { step[i] = (size_t)_strides[i]; default_step = step[i] * size[i]; } else { step[i] = default_step; default_step *= size[i]; } } // handle degenerate case // FIXIT: Don't force 1D for Scalars if( ndims == 0) { size[ndims] = 1; step[ndims] = elemsize; ndims++; } #if 1 CV_LOG_DEBUG(NULL, "Construct Mat: ndims=" << ndims << " size=" << pycv_dumpArray(size, ndims) << " step=" << pycv_dumpArray(step, ndims) << " type=" << cv::typeToString(type)); #endif m = Mat(ndims, size, type, PyArray_DATA(oarr), step); m.u = g_numpyAllocator.allocate(o, ndims, size, type, step); m.addref(); if( !needcopy ) { Py_INCREF(o); } m.allocator = &g_numpyAllocator; return true; } template bool pyopencv_to(PyObject* o, Matx<_Tp, m, n>& mx, const ArgInfo& info) { Mat tmp; if (!pyopencv_to(o, tmp, info)) { return false; } tmp.copyTo(mx); return true; } template bool pyopencv_to(PyObject* o, Vec<_Tp, cn>& vec, const ArgInfo& info) { return pyopencv_to(o, (Matx<_Tp, cn, 1>&)vec, info); } template<> PyObject* pyopencv_from(const Mat& m) { if( !m.data ) Py_RETURN_NONE; Mat temp, *p = (Mat*)&m; if(!p->u || p->allocator != &g_numpyAllocator) { temp.allocator = &g_numpyAllocator; ERRWRAP2(m.copyTo(temp)); p = &temp; } PyObject* o = (PyObject*)p->u->userdata; Py_INCREF(o); return o; } template PyObject* pyopencv_from(const Matx<_Tp, m, n>& matx) { return pyopencv_from(Mat(matx)); } template struct PyOpenCV_Converter< cv::Ptr > { static PyObject* from(const cv::Ptr& p) { if (!p) Py_RETURN_NONE; return pyopencv_from(*p); } static bool to(PyObject *o, Ptr& p, const ArgInfo& info) { if (!o || o == Py_None) return true; p = makePtr(); return pyopencv_to(o, *p, info); } }; template<> bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info) { CV_UNUSED(info); if (!obj || obj == Py_None) return true; if (!PyLong_Check(obj)) return false; ptr = PyLong_AsVoidPtr(obj); return ptr != NULL && !PyErr_Occurred(); } static PyObject* pyopencv_from(void*& ptr) { return PyLong_FromVoidPtr(ptr); } static bool pyopencv_to(PyObject *o, Scalar& s, const ArgInfo& info) { if(!o || o == Py_None) return true; if (PySequence_Check(o)) { if (4 < PySequence_Size(o)) { failmsg("Scalar value for argument '%s' is longer than 4", info.name); return false; } for (Py_ssize_t i = 0; i < PySequence_Size(o); i++) { SafeSeqItem item_wrap(o, i); PyObject *item = item_wrap.item; if (PyFloat_Check(item) || PyInt_Check(item)) { s[(int)i] = PyFloat_AsDouble(item); } else { failmsg("Scalar value for argument '%s' is not numeric", info.name); return false; } } } else { if (PyFloat_Check(o) || PyInt_Check(o)) { s[0] = PyFloat_AsDouble(o); } else { failmsg("Scalar value for argument '%s' is not numeric", info.name); return false; } } return true; } template<> PyObject* pyopencv_from(const Scalar& src) { return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]); } template<> PyObject* pyopencv_from(const bool& value) { return PyBool_FromLong(value); } template<> bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj) || PyArray_IsIntegerScalar(obj)) { npy_bool npy_value = NPY_FALSE; const int ret_code = PyArray_BoolConverter(obj, &npy_value); if (ret_code >= 0) { value = (npy_value == NPY_TRUE); return true; } } failmsg("Argument '%s' is not convertable to bool", info.name); return false; } template<> PyObject* pyopencv_from(const size_t& value) { return PyLong_FromSize_t(value); } template<> bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be integer type, not bool", info.name); return false; } if (PyArray_IsIntegerScalar(obj)) { if (PyLong_Check(obj)) { #if defined(CV_PYTHON_3) value = PyLong_AsSize_t(obj); #else #if ULONG_MAX == SIZE_MAX value = PyLong_AsUnsignedLong(obj); #else value = PyLong_AsUnsignedLongLong(obj); #endif #endif } #if !defined(CV_PYTHON_3) // Python 2.x has PyIntObject which is not a subtype of PyLongObject // Overflow check here is unnecessary because object will be converted to long on the // interpreter side else if (PyInt_Check(obj)) { const long res = PyInt_AsLong(obj); if (res < 0) { failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name); return false; } #if ULONG_MAX == SIZE_MAX value = PyInt_AsUnsignedLongMask(obj); #else value = PyInt_AsUnsignedLongLongMask(obj); #endif } #endif else { const bool isParsed = parseNumpyScalar(obj, value); if (!isParsed) { failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name); return false; } } } else { failmsg("Argument '%s' is required to be an integer", info.name); return false; } return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const int& value) { return PyInt_FromLong(value); } template<> bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be integer, not bool", info.name); return false; } if (PyArray_IsIntegerScalar(obj)) { value = PyArray_PyIntAsInt(obj); } else { failmsg("Argument '%s' is required to be an integer", info.name); return false; } return !CV_HAS_CONVERSION_ERROR(value); } // There is conflict between "size_t" and "unsigned int". // They are the same type on some 32-bit platforms. template struct PyOpenCV_Converter < T, typename std::enable_if< std::is_same::value && !std::is_same::value >::type > { static inline PyObject* from(const unsigned int& value) { return PyLong_FromUnsignedLong(value); } static inline bool to(PyObject* obj, unsigned int& value, const ArgInfo& info) { CV_UNUSED(info); if(!obj || obj == Py_None) return true; if(PyInt_Check(obj)) value = (unsigned int)PyInt_AsLong(obj); else if(PyLong_Check(obj)) value = (unsigned int)PyLong_AsLong(obj); else return false; return value != (unsigned int)-1 || !PyErr_Occurred(); } }; template<> PyObject* pyopencv_from(const uchar& value) { return PyInt_FromLong(value); } template<> bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info) { CV_UNUSED(info); if(!obj || obj == Py_None) return true; int ivalue = (int)PyInt_AsLong(obj); value = cv::saturate_cast(ivalue); return ivalue != -1 || !PyErr_Occurred(); } template<> bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be an integer, not bool", info.name); return false; } if (PyArray_IsIntegerScalar(obj)) { value = saturate_cast(PyArray_PyIntAsInt(obj)); } else { failmsg("Argument '%s' is required to be an integer", info.name); return false; } return !CV_HAS_CONVERSION_ERROR(value); } template<> PyObject* pyopencv_from(const double& value) { return PyFloat_FromDouble(value); } template<> bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be double, not bool", info.name); return false; } if (PyArray_IsPythonNumber(obj)) { if (PyLong_Check(obj)) { value = PyLong_AsDouble(obj); } else { value = PyFloat_AsDouble(obj); } } else if (PyArray_CheckScalar(obj)) { const bool isParsed = parseNumpyScalar(obj, value); if (!isParsed) { failmsg("Argument '%s' can not be safely parsed to 'double'", info.name); return false; } } else { failmsg("Argument '%s' can not be treated as a double", info.name); return false; } return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const float& value) { return PyFloat_FromDouble(value); } template<> bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be float, not bool", info.name); return false; } if (PyArray_IsPythonNumber(obj)) { if (PyLong_Check(obj)) { double res = PyLong_AsDouble(obj); value = static_cast(res); } else { double res = PyFloat_AsDouble(obj); value = static_cast(res); } } else if (PyArray_CheckScalar(obj)) { const bool isParsed = parseNumpyScalar(obj, value); if (!isParsed) { failmsg("Argument '%s' can not be safely parsed to 'float'", info.name); return false; } } else { failmsg("Argument '%s' can't be treated as a float", info.name); return false; } return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const int64& value) { return PyLong_FromLongLong(value); } template<> PyObject* pyopencv_from(const String& value) { return PyString_FromString(value.empty() ? "" : value.c_str()); } #if CV_VERSION_MAJOR == 3 template<> PyObject* pyopencv_from(const std::string& value) { return PyString_FromString(value.empty() ? "" : value.c_str()); } #endif template<> bool pyopencv_to(PyObject* obj, String &value, const ArgInfo& info) { if(!obj || obj == Py_None) { return true; } std::string str; if (getUnicodeString(obj, str)) { value = str; return true; } else { // If error hasn't been already set by Python conversion functions if (!PyErr_Occurred()) { // Direct access to underlying slots of PyObjectType is not allowed // when limited API is enabled #ifdef Py_LIMITED_API failmsg("Can't convert object to 'str' for '%s'", info.name); #else failmsg("Can't convert object of type '%s' to 'str' for '%s'", obj->ob_type->tp_name, info.name); #endif } } return false; } template<> bool pyopencv_to(PyObject* obj, Size& sz, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(sz.width), RefWrapper(sz.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Size& sz) { return Py_BuildValue("(ii)", sz.width, sz.height); } template<> bool pyopencv_to(PyObject* obj, Size_& sz, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(sz.width), RefWrapper(sz.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Size_& sz) { return Py_BuildValue("(ff)", sz.width, sz.height); } template<> bool pyopencv_to(PyObject* obj, Rect& r, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(r.x), RefWrapper(r.y), RefWrapper(r.width), RefWrapper(r.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Rect& r) { return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height); } template<> bool pyopencv_to(PyObject* obj, Rect2d& r, const ArgInfo& info) { RefWrapper values[] = { RefWrapper(r.x), RefWrapper(r.y), RefWrapper(r.width), RefWrapper(r.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Rect2d& r) { return Py_BuildValue("(dddd)", r.x, r.y, r.width, r.height); } template<> bool pyopencv_to(PyObject* obj, Range& r, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (PyObject_Size(obj) == 0) { r = Range::all(); return true; } RefWrapper values[] = {RefWrapper(r.start), RefWrapper(r.end)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Range& r) { return Py_BuildValue("(ii)", r.start, r.end); } template<> bool pyopencv_to(PyObject* obj, Point& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y)}; return parseSequence(obj, values, info); } template <> bool pyopencv_to(PyObject* obj, Point2f& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y)}; return parseSequence(obj, values, info); } template<> bool pyopencv_to(PyObject* obj, Point2d& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y)}; return parseSequence(obj, values, info); } template<> bool pyopencv_to(PyObject* obj, Point3f& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y), RefWrapper(p.z)}; return parseSequence(obj, values, info); } template<> bool pyopencv_to(PyObject* obj, Point3d& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y), RefWrapper(p.z)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Point& p) { return Py_BuildValue("(ii)", p.x, p.y); } template<> PyObject* pyopencv_from(const Point2f& p) { return Py_BuildValue("(dd)", p.x, p.y); } template<> PyObject* pyopencv_from(const Point3f& p) { return Py_BuildValue("(ddd)", p.x, p.y, p.z); } static bool pyopencv_to(PyObject* obj, Vec4d& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2]), RefWrapper(v[3])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec4f& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2]), RefWrapper(v[3])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec4i& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2]), RefWrapper(v[3])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec3d& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec3f& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec3i& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec2d& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec2f& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1])}; return parseSequence(obj, values, info); } static bool pyopencv_to(PyObject* obj, Vec2i& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1])}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Vec4d& v) { return Py_BuildValue("(dddd)", v[0], v[1], v[2], v[3]); } template<> PyObject* pyopencv_from(const Vec4f& v) { return Py_BuildValue("(ffff)", v[0], v[1], v[2], v[3]); } template<> PyObject* pyopencv_from(const Vec4i& v) { return Py_BuildValue("(iiii)", v[0], v[1], v[2], v[3]); } template<> PyObject* pyopencv_from(const Vec3d& v) { return Py_BuildValue("(ddd)", v[0], v[1], v[2]); } template<> PyObject* pyopencv_from(const Vec3f& v) { return Py_BuildValue("(fff)", v[0], v[1], v[2]); } template<> PyObject* pyopencv_from(const Vec3i& v) { return Py_BuildValue("(iii)", v[0], v[1], v[2]); } template<> PyObject* pyopencv_from(const Vec2d& v) { return Py_BuildValue("(dd)", v[0], v[1]); } template<> PyObject* pyopencv_from(const Vec2f& v) { return Py_BuildValue("(ff)", v[0], v[1]); } template<> PyObject* pyopencv_from(const Vec2i& v) { return Py_BuildValue("(ii)", v[0], v[1]); } template<> PyObject* pyopencv_from(const Point2d& p) { return Py_BuildValue("(dd)", p.x, p.y); } template<> PyObject* pyopencv_from(const Point3d& p) { return Py_BuildValue("(ddd)", p.x, p.y, p.z); } template<> PyObject* pyopencv_from(const std::pair& src) { return Py_BuildValue("(id)", src.first, src.second); } template<> bool pyopencv_to(PyObject* obj, TermCriteria& dst, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s' as TermCriteria." "Input argument doesn't provide sequence protocol", info.name); return false; } const std::size_t sequenceSize = PySequence_Size(obj); if (sequenceSize != 3) { failmsg("Can't parse '%s' as TermCriteria. Expected sequence length 3, " "got %lu", info.name, sequenceSize); return false; } { const String typeItemName = format("'%s' criteria type", info.name); const ArgInfo typeItemInfo(typeItemName.c_str(), false); SafeSeqItem typeItem(obj, 0); if (!pyopencv_to(typeItem.item, dst.type, typeItemInfo)) { return false; } } { const String maxCountItemName = format("'%s' max count", info.name); const ArgInfo maxCountItemInfo(maxCountItemName.c_str(), false); SafeSeqItem maxCountItem(obj, 1); if (!pyopencv_to(maxCountItem.item, dst.maxCount, maxCountItemInfo)) { return false; } } { const String epsilonItemName = format("'%s' epsilon", info.name); const ArgInfo epsilonItemInfo(epsilonItemName.c_str(), false); SafeSeqItem epsilonItem(obj, 2); if (!pyopencv_to(epsilonItem.item, dst.epsilon, epsilonItemInfo)) { return false; } } return true; } template<> PyObject* pyopencv_from(const TermCriteria& src) { return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon); } template<> bool pyopencv_to(PyObject* obj, RotatedRect& dst, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s' as RotatedRect." "Input argument doesn't provide sequence protocol", info.name); return false; } const std::size_t sequenceSize = PySequence_Size(obj); if (sequenceSize != 3) { failmsg("Can't parse '%s' as RotatedRect. Expected sequence length 3, got %lu", info.name, sequenceSize); return false; } { const String centerItemName = format("'%s' center point", info.name); const ArgInfo centerItemInfo(centerItemName.c_str(), false); SafeSeqItem centerItem(obj, 0); if (!pyopencv_to(centerItem.item, dst.center, centerItemInfo)) { return false; } } { const String sizeItemName = format("'%s' size", info.name); const ArgInfo sizeItemInfo(sizeItemName.c_str(), false); SafeSeqItem sizeItem(obj, 1); if (!pyopencv_to(sizeItem.item, dst.size, sizeItemInfo)) { return false; } } { const String angleItemName = format("'%s' angle", info.name); const ArgInfo angleItemInfo(angleItemName.c_str(), false); SafeSeqItem angleItem(obj, 2); if (!pyopencv_to(angleItem.item, dst.angle, angleItemInfo)) { return false; } } return true; } template<> PyObject* pyopencv_from(const RotatedRect& src) { return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle); } template<> PyObject* pyopencv_from(const Moments& m) { return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}", "m00", m.m00, "m10", m.m10, "m01", m.m01, "m20", m.m20, "m11", m.m11, "m02", m.m02, "m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03, "mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02, "mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03, "nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02, "nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03); } template struct pyopencvVecConverter; template bool pyopencv_to(PyObject* obj, std::vector& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } return pyopencvVecConverter::to(obj, value, info); } template PyObject* pyopencv_from(const std::vector& value) { return pyopencvVecConverter::from(value); } template static bool pyopencv_to_generic_vec(PyObject* obj, std::vector& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name); return false; } const size_t n = static_cast(PySequence_Size(obj)); value.resize(n); for (size_t i = 0; i < n; i++) { SafeSeqItem item_wrap(obj, i); if (!pyopencv_to(item_wrap.item, value[i], info)) { failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i); return false; } } return true; } template<> inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name); return false; } const size_t n = static_cast(PySequence_Size(obj)); value.resize(n); for (size_t i = 0; i < n; i++) { SafeSeqItem item_wrap(obj, i); bool elem{}; if (!pyopencv_to(item_wrap.item, elem, info)) { failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i); return false; } value[i] = elem; } return true; } template static PyObject* pyopencv_from_generic_vec(const std::vector& value) { Py_ssize_t n = static_cast(value.size()); PySafeObject seq(PyTuple_New(n)); for (Py_ssize_t i = 0; i < n; i++) { PyObject* item = pyopencv_from(value[i]); // If item can't be assigned - PyTuple_SetItem raises exception and returns -1. if (!item || PyTuple_SetItem(seq, i, item) == -1) { return NULL; } } return seq.release(); } template<> inline PyObject* pyopencv_from_generic_vec(const std::vector& value) { Py_ssize_t n = static_cast(value.size()); PySafeObject seq(PyTuple_New(n)); for (Py_ssize_t i = 0; i < n; i++) { bool elem = value[i]; PyObject* item = pyopencv_from(elem); // If item can't be assigned - PyTuple_SetItem raises exception and returns -1. if (!item || PyTuple_SetItem(seq, i, item) == -1) { return NULL; } } return seq.release(); } template inline typename std::enable_if::type convert_to_python_tuple(const std::tuple&, PyObject*) { } template inline typename std::enable_if::type convert_to_python_tuple(const std::tuple& cpp_tuple, PyObject* py_tuple) { PyObject* item = pyopencv_from(std::get(cpp_tuple)); if (!item) return; PyTuple_SetItem(py_tuple, I, item); convert_to_python_tuple(cpp_tuple, py_tuple); } template PyObject* pyopencv_from(const std::tuple& cpp_tuple) { size_t size = sizeof...(Ts); PyObject* py_tuple = PyTuple_New(size); convert_to_python_tuple(cpp_tuple, py_tuple); size_t actual_size = PyTuple_Size(py_tuple); if (actual_size < size) { Py_DECREF(py_tuple); return NULL; } return py_tuple; } template struct pyopencvVecConverter { typedef typename std::vector::iterator VecIt; static bool to(PyObject* obj, std::vector& value, const ArgInfo& info) { if (!PyArray_Check(obj)) { return pyopencv_to_generic_vec(obj, value, info); } // If user passed an array it is possible to make faster conversions in several cases PyArrayObject* array_obj = reinterpret_cast(obj); const NPY_TYPES target_type = asNumpyType(); const NPY_TYPES source_type = static_cast(PyArray_TYPE(array_obj)); if (target_type == NPY_OBJECT) { // Non-planar arrays representing objects (e.g. array of N Rect is an array of shape Nx4) have NPY_OBJECT // as their target type. return pyopencv_to_generic_vec(obj, value, info); } if (PyArray_NDIM(array_obj) > 1) { failmsg("Can't parse %dD array as '%s' vector argument", PyArray_NDIM(array_obj), info.name); return false; } if (target_type != source_type) { // Source type requires conversion // Allowed conversions for target type is handled in the corresponding pyopencv_to function return pyopencv_to_generic_vec(obj, value, info); } // For all other cases, all array data can be directly copied to std::vector data // Simple `memcpy` is not possible because NumPy array can reference a slice of the bigger array: // ``` // arr = np.ones((8, 4, 5), dtype=np.int32) // convertible_to_vector_of_int = arr[:, 0, 1] // ``` value.resize(static_cast(PyArray_SIZE(array_obj))); const npy_intp item_step = PyArray_STRIDE(array_obj, 0) / PyArray_ITEMSIZE(array_obj); const Tp* data_ptr = static_cast(PyArray_DATA(array_obj)); for (VecIt it = value.begin(); it != value.end(); ++it, data_ptr += item_step) { *it = *data_ptr; } return true; } static PyObject* from(const std::vector& value) { if (value.empty()) { return PyTuple_New(0); } return from(value, ::traits::IsRepresentableAsMatDataType()); } private: static PyObject* from(const std::vector& value, ::traits::FalseType) { // Underlying type is not representable as Mat Data Type return pyopencv_from_generic_vec(value); } static PyObject* from(const std::vector& value, ::traits::TrueType) { // Underlying type is representable as Mat Data Type, so faster return type is available typedef DataType DType; typedef typename DType::channel_type UnderlyingArrayType; // If Mat is always exposed as NumPy array this code path can be reduced to the following snipped: // Mat src(value); // PyObject* array = pyopencv_from(src); // return PyArray_Squeeze(reinterpret_cast(array)); // This puts unnecessary restrictions on Mat object those might be avoided without losing the performance. // Moreover, this version is a bit faster, because it doesn't create temporary objects with reference counting. const NPY_TYPES target_type = asNumpyType(); const int cols = DType::channels; PyObject* array = NULL; if (cols == 1) { npy_intp dims = static_cast(value.size()); array = PyArray_SimpleNew(1, &dims, target_type); } else { npy_intp dims[2] = {static_cast(value.size()), cols}; array = PyArray_SimpleNew(2, dims, target_type); } if(!array) { // NumPy arrays with shape (N, 1) and (N) are not equal, so correct error message should distinguish // them too. String shape; if (cols > 1) { shape = format("(%d x %d)", static_cast(value.size()), cols); } else { shape = format("(%d)", static_cast(value.size())); } const String error_message = format("Can't allocate NumPy array for vector with dtype=%d and shape=%s", static_cast(target_type), shape.c_str()); emit_failmsg(PyExc_MemoryError, error_message.c_str()); return array; } // Fill the array PyArrayObject* array_obj = reinterpret_cast(array); UnderlyingArrayType* array_data = static_cast(PyArray_DATA(array_obj)); // if Tp is representable as Mat DataType, so the following cast is pretty safe... const UnderlyingArrayType* value_data = reinterpret_cast(value.data()); memcpy(array_data, value_data, sizeof(UnderlyingArrayType) * value.size() * static_cast(cols)); return array; } }; static int OnError(int status, const char *func_name, const char *err_msg, const char *file_name, int line, void *userdata) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *on_error = (PyObject*)userdata; PyObject *args = Py_BuildValue("isssi", status, func_name, err_msg, file_name, line); PyObject *r = PyObject_Call(on_error, args, NULL); if (r == NULL) { PyErr_Print(); } else { Py_DECREF(r); } Py_DECREF(args); PyGILState_Release(gstate); return 0; // The return value isn't used } static PyObject *pycvRedirectError(PyObject*, PyObject *args, PyObject *kw) { const char *keywords[] = { "on_error", NULL }; PyObject *on_error; if (!PyArg_ParseTupleAndKeywords(args, kw, "O", (char**)keywords, &on_error)) return NULL; if ((on_error != Py_None) && !PyCallable_Check(on_error)) { PyErr_SetString(PyExc_TypeError, "on_error must be callable"); return NULL; } // Keep track of the previous handler parameter, so we can decref it when no longer used static PyObject* last_on_error = NULL; if (last_on_error) { Py_DECREF(last_on_error); last_on_error = NULL; } if (on_error == Py_None) { ERRWRAP2(redirectError(NULL)); } else { last_on_error = on_error; Py_INCREF(last_on_error); ERRWRAP2(redirectError(OnError, last_on_error)); } Py_RETURN_NONE; } static void OnMouse(int event, int x, int y, int flags, void* param) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *o = (PyObject*)param; PyObject *args = Py_BuildValue("iiiiO", event, x, y, flags, PyTuple_GetItem(o, 1)); PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL); if (r == NULL) PyErr_Print(); else Py_DECREF(r); Py_DECREF(args); PyGILState_Release(gstate); } #ifdef HAVE_OPENCV_HIGHGUI static PyObject *pycvSetMouseCallback(PyObject*, PyObject *args, PyObject *kw) { const char *keywords[] = { "window_name", "on_mouse", "param", NULL }; char* name; PyObject *on_mouse; PyObject *param = NULL; if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|O", (char**)keywords, &name, &on_mouse, ¶m)) return NULL; if (!PyCallable_Check(on_mouse)) { PyErr_SetString(PyExc_TypeError, "on_mouse must be callable"); return NULL; } if (param == NULL) { param = Py_None; } PyObject* py_callback_info = Py_BuildValue("OO", on_mouse, param); static std::map registered_callbacks; std::map::iterator i = registered_callbacks.find(name); if (i != registered_callbacks.end()) { Py_DECREF(i->second); i->second = py_callback_info; } else { registered_callbacks.insert(std::pair(std::string(name), py_callback_info)); } ERRWRAP2(setMouseCallback(name, OnMouse, py_callback_info)); Py_RETURN_NONE; } #endif static void OnChange(int pos, void *param) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *o = (PyObject*)param; PyObject *args = Py_BuildValue("(i)", pos); PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL); if (r == NULL) PyErr_Print(); else Py_DECREF(r); Py_DECREF(args); PyGILState_Release(gstate); } #ifdef HAVE_OPENCV_HIGHGUI // workaround for #20408, use nullptr, set value later static int _createTrackbar(const String &trackbar_name, const String &window_name, int value, int count, TrackbarCallback onChange, PyObject* py_callback_info) { int n = createTrackbar(trackbar_name, window_name, NULL, count, onChange, py_callback_info); setTrackbarPos(trackbar_name, window_name, value); return n; } static PyObject *pycvCreateTrackbar(PyObject*, PyObject *args) { PyObject *on_change; char* trackbar_name; char* window_name; int value; int count; if (!PyArg_ParseTuple(args, "ssiiO", &trackbar_name, &window_name, &value, &count, &on_change)) return NULL; if (!PyCallable_Check(on_change)) { PyErr_SetString(PyExc_TypeError, "on_change must be callable"); return NULL; } PyObject* py_callback_info = Py_BuildValue("OO", on_change, Py_None); std::string name = std::string(window_name) + ":" + std::string(trackbar_name); static std::map registered_callbacks; std::map::iterator i = registered_callbacks.find(name); if (i != registered_callbacks.end()) { Py_DECREF(i->second); i->second = py_callback_info; } else { registered_callbacks.insert(std::pair(name, py_callback_info)); } ERRWRAP2(_createTrackbar(trackbar_name, window_name, value, count, OnChange, py_callback_info)); Py_RETURN_NONE; } static void OnButtonChange(int state, void *param) { PyGILState_STATE gstate; gstate = PyGILState_Ensure(); PyObject *o = (PyObject*)param; PyObject *args; if(PyTuple_GetItem(o, 1) != NULL) { args = Py_BuildValue("(iO)", state, PyTuple_GetItem(o,1)); } else { args = Py_BuildValue("(i)", state); } PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL); if (r == NULL) PyErr_Print(); else Py_DECREF(r); Py_DECREF(args); PyGILState_Release(gstate); } static PyObject *pycvCreateButton(PyObject*, PyObject *args, PyObject *kw) { const char* keywords[] = {"buttonName", "onChange", "userData", "buttonType", "initialButtonState", NULL}; PyObject *on_change; PyObject *userdata = NULL; char* button_name; int button_type = 0; int initial_button_state = 0; if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|Oii", (char**)keywords, &button_name, &on_change, &userdata, &button_type, &initial_button_state)) return NULL; if (!PyCallable_Check(on_change)) { PyErr_SetString(PyExc_TypeError, "onChange must be callable"); return NULL; } if (userdata == NULL) { userdata = Py_None; } PyObject* py_callback_info = Py_BuildValue("OO", on_change, userdata); std::string name(button_name); static std::map registered_callbacks; std::map::iterator i = registered_callbacks.find(name); if (i != registered_callbacks.end()) { Py_DECREF(i->second); i->second = py_callback_info; } else { registered_callbacks.insert(std::pair(name, py_callback_info)); } ERRWRAP2(createButton(button_name, OnButtonChange, py_callback_info, button_type, initial_button_state != 0)); Py_RETURN_NONE; } #endif /////////////////////////////////////////////////////////////////////////////////////// static int convert_to_char(PyObject *o, char *dst, const ArgInfo& info) { std::string str; if (getUnicodeString(o, str)) { *dst = str[0]; return 1; } (*dst) = 0; return failmsg("Expected single character string for argument '%s'", info.name); } #ifdef __GNUC__ # pragma GCC diagnostic ignored "-Wunused-parameter" # pragma GCC diagnostic ignored "-Wmissing-field-initializers" #endif #include "pyopencv_generated_enums.h" #ifdef CVPY_DYNAMIC_INIT #define CVPY_TYPE(WNAME, NAME, STORAGE, SNAME, _1, _2) CVPY_TYPE_DECLARE_DYNAMIC(WNAME, NAME, STORAGE, SNAME) #else #define CVPY_TYPE(WNAME, NAME, STORAGE, SNAME, _1, _2) CVPY_TYPE_DECLARE(WNAME, NAME, STORAGE, SNAME) #endif #include "pyopencv_generated_types.h" #undef CVPY_TYPE #include "pyopencv_custom_headers.h" #include "pyopencv_generated_types_content.h" #include "pyopencv_generated_funcs.h" static PyObject* pycvRegisterMatType(PyObject *self, PyObject *value) { CV_LOG_DEBUG(NULL, cv::format("pycvRegisterMatType %p %p\n", self, value)); if (0 == PyType_Check(value)) { PyErr_SetString(PyExc_TypeError, "Type argument is expected"); return NULL; } Py_INCREF(value); pyopencv_Mat_TypePtr = (PyTypeObject*)value; Py_RETURN_NONE; } static PyMethodDef special_methods[] = { {"_registerMatType", (PyCFunction)(pycvRegisterMatType), METH_O, "_registerMatType(cv.Mat) -> None (Internal)"}, {"redirectError", CV_PY_FN_WITH_KW(pycvRedirectError), "redirectError(onError) -> None"}, #ifdef HAVE_OPENCV_HIGHGUI {"createTrackbar", (PyCFunction)pycvCreateTrackbar, METH_VARARGS, "createTrackbar(trackbarName, windowName, value, count, onChange) -> None"}, {"createButton", CV_PY_FN_WITH_KW(pycvCreateButton), "createButton(buttonName, onChange [, userData, buttonType, initialButtonState]) -> None"}, {"setMouseCallback", CV_PY_FN_WITH_KW(pycvSetMouseCallback), "setMouseCallback(windowName, onMouse [, param]) -> None"}, #endif #ifdef HAVE_OPENCV_DNN {"dnn_registerLayer", CV_PY_FN_WITH_KW(pyopencv_cv_dnn_registerLayer), "registerLayer(type, class) -> None"}, {"dnn_unregisterLayer", CV_PY_FN_WITH_KW(pyopencv_cv_dnn_unregisterLayer), "unregisterLayer(type) -> None"}, #endif {NULL, NULL}, }; /************************************************************************/ /* Module init */ struct ConstDef { const char * name; long long val; }; static void init_submodule(PyObject * root, const char * name, PyMethodDef * methods, ConstDef * consts) { // traverse and create nested submodules std::string s = name; size_t i = s.find('.'); while (i < s.length() && i != std::string::npos) { size_t j = s.find('.', i); if (j == std::string::npos) j = s.length(); std::string short_name = s.substr(i, j-i); std::string full_name = s.substr(0, j); i = j+1; PyObject * d = PyModule_GetDict(root); PyObject * submod = PyDict_GetItemString(d, short_name.c_str()); if (submod == NULL) { submod = PyImport_AddModule(full_name.c_str()); PyDict_SetItemString(d, short_name.c_str(), submod); } if (short_name != "") root = submod; } // populate module's dict PyObject * d = PyModule_GetDict(root); for (PyMethodDef * m = methods; m->ml_name != NULL; ++m) { PyObject * method_obj = PyCFunction_NewEx(m, NULL, NULL); PyDict_SetItemString(d, m->ml_name, method_obj); Py_DECREF(method_obj); } for (ConstDef * c = consts; c->name != NULL; ++c) { PyDict_SetItemString(d, c->name, PyLong_FromLongLong(c->val)); } } #include "pyopencv_generated_modules_content.h" static bool init_body(PyObject * m) { #define CVPY_MODULE(NAMESTR, NAME) \ init_submodule(m, MODULESTR NAMESTR, methods_##NAME, consts_##NAME) #include "pyopencv_generated_modules.h" #undef CVPY_MODULE #ifdef CVPY_DYNAMIC_INIT #define CVPY_TYPE(WNAME, NAME, _1, _2, BASE, CONSTRUCTOR) CVPY_TYPE_INIT_DYNAMIC(WNAME, NAME, return false, BASE, CONSTRUCTOR) PyObject * pyopencv_NoBase_TypePtr = NULL; #else #define CVPY_TYPE(WNAME, NAME, _1, _2, BASE, CONSTRUCTOR) CVPY_TYPE_INIT_STATIC(WNAME, NAME, return false, BASE, CONSTRUCTOR) PyTypeObject * pyopencv_NoBase_TypePtr = NULL; #endif #include "pyopencv_generated_types.h" #undef CVPY_TYPE PyObject* d = PyModule_GetDict(m); PyDict_SetItemString(d, "__version__", PyString_FromString(CV_VERSION)); PyObject *opencv_error_dict = PyDict_New(); PyDict_SetItemString(opencv_error_dict, "file", Py_None); PyDict_SetItemString(opencv_error_dict, "func", Py_None); PyDict_SetItemString(opencv_error_dict, "line", Py_None); PyDict_SetItemString(opencv_error_dict, "code", Py_None); PyDict_SetItemString(opencv_error_dict, "msg", Py_None); PyDict_SetItemString(opencv_error_dict, "err", Py_None); opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, opencv_error_dict); Py_DECREF(opencv_error_dict); PyDict_SetItemString(d, "error", opencv_error); #define PUBLISH(I) PyDict_SetItemString(d, #I, PyInt_FromLong(I)) PUBLISH(CV_8U); PUBLISH(CV_8UC1); PUBLISH(CV_8UC2); PUBLISH(CV_8UC3); PUBLISH(CV_8UC4); PUBLISH(CV_8S); PUBLISH(CV_8SC1); PUBLISH(CV_8SC2); PUBLISH(CV_8SC3); PUBLISH(CV_8SC4); PUBLISH(CV_16U); PUBLISH(CV_16UC1); PUBLISH(CV_16UC2); PUBLISH(CV_16UC3); PUBLISH(CV_16UC4); PUBLISH(CV_16S); PUBLISH(CV_16SC1); PUBLISH(CV_16SC2); PUBLISH(CV_16SC3); PUBLISH(CV_16SC4); PUBLISH(CV_32S); PUBLISH(CV_32SC1); PUBLISH(CV_32SC2); PUBLISH(CV_32SC3); PUBLISH(CV_32SC4); PUBLISH(CV_32F); PUBLISH(CV_32FC1); PUBLISH(CV_32FC2); PUBLISH(CV_32FC3); PUBLISH(CV_32FC4); PUBLISH(CV_64F); PUBLISH(CV_64FC1); PUBLISH(CV_64FC2); PUBLISH(CV_64FC3); PUBLISH(CV_64FC4); #undef PUBLISH return true; } #if defined(__GNUC__) #pragma GCC visibility push(default) #endif #if defined(CV_PYTHON_3) // === Python 3 static struct PyModuleDef cv2_moduledef = { PyModuleDef_HEAD_INIT, MODULESTR, "Python wrapper for OpenCV.", -1, /* size of per-interpreter state of the module, or -1 if the module keeps state in global variables. */ special_methods }; PyMODINIT_FUNC PyInit_cv2(); PyObject* PyInit_cv2() { import_array(); // from numpy PyObject* m = PyModule_Create(&cv2_moduledef); if (!init_body(m)) return NULL; return m; } #else // === Python 2 PyMODINIT_FUNC initcv2(); void initcv2() { import_array(); // from numpy PyObject* m = Py_InitModule(MODULESTR, special_methods); init_body(m); } #endif