// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "layer/convolution3d.h" #include "testutil.h" static int test_convolution3d(int w, int h, int d, int c, int outch, int kernel, int dilation, int stride, int pad, int bias) { ncnn::Mat a = RandomMat(w, h, d, c); ncnn::ParamDict pd; pd.set(0, outch); // num_output pd.set(1, kernel); // kernel_w pd.set(2, dilation); // dilation_w pd.set(3, stride); // stride_w pd.set(4, pad); // pad_w pd.set(5, bias); // bias_term pd.set(6, outch * c * kernel * kernel * kernel); int activation_type = RAND() % 6; // 0 1 2 3 4 5 ncnn::Mat activation_params(2); activation_params[0] = RandomFloat(-1, 0); // alpha activation_params[1] = RandomFloat(0, 1); // beta pd.set(9, activation_type); pd.set(10, activation_params); std::vector weights(bias ? 2 : 1); weights[0] = RandomMat(outch * c * kernel * kernel * kernel); if (bias) weights[1] = RandomMat(outch); int ret = test_layer("Convolution3D", pd, weights, a); if (ret != 0) { fprintf(stderr, "test_convolution3d failed w=%d h=%d d=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f]\n", w, h, d, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1]); } return ret; } static int test_convolution3d_0() { static const int kdsp[7][4] = { {1, 1, 1, 0}, {1, 1, 2, 0}, {2, 1, 1, 1}, {2, 1, 2, -233}, {3, 1, 1, 1}, {3, 1, 2, 1}, {3, 2, 1, -234}, }; for (int i = 0; i < 7; i++) { const int k = kdsp[i][0]; const int d = kdsp[i][1]; const int s = kdsp[i][2]; const int p = kdsp[i][3]; int ret = 0 || test_convolution3d(11, 10, 9, 1, 1, k, d, s, p, 1) || test_convolution3d(11, 10, 9, 4, 13, k, d, s, p, 0) || test_convolution3d(11, 10, 9, 13, 4, k, d, s, p, 1) || test_convolution3d(11, 10, 9, 12, 12, k, d, s, p, 0) || test_convolution3d(11, 10, 9, 8, 12, k, d, s, p, 1) || test_convolution3d(11, 10, 9, 8, 13, k, d, s, p, 0) || test_convolution3d(11, 10, 9, 13, 8, k, d, s, p, 1) || test_convolution3d(11, 10, 9, 12, 16, k, d, s, p, 0) || test_convolution3d(11, 10, 9, 15, 15, k, d, s, p, 0) || test_convolution3d(11, 10, 9, 16, 16, k, d, s, p, 0); if (ret != 0) return -1; } return 0; } int main() { SRAND(7767517); return test_convolution3d_0(); }