// Tencent is pleased to support the open source community by making ncnn available. // // Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include #include #include #include #include #include #include #include class MXNetParam; class MXNetNode { public: bool has_attr(const char* key) const; bool is_attr_scalar(const char* key) const; class AttrProxy { MXNetNode const* _n; const char* const _key; public: AttrProxy(MXNetNode const* n, const char* key) : _n(n), _key(key) { } operator int() const { return _n->attr_i(_key); } operator float() const { return _n->attr_f(_key); } operator std::string() const { return _n->attr_s(_key); } operator std::vector() const { return _n->attr_ai(_key); } operator std::vector() const { return _n->attr_af(_key); } }; AttrProxy attr(const char* key) const { return AttrProxy(this, key); } int attr_i(const char* key) const; float attr_f(const char* key) const; std::string attr_s(const char* key) const; std::vector attr_ai(const char* key) const; std::vector attr_af(const char* key) const; public: bool is_weight() const; bool has_weight(int i) const; std::vector weight(int i, int init_len = 0) const; std::vector* nodes; // reference std::vector* params; // reference public: std::string op; std::string name; int output_size; std::map attrs; std::vector inputs; std::vector subinputs; std::vector weights; }; class MXNetParam { public: std::string name; std::vector data; std::string init; }; bool MXNetNode::has_attr(const char* key) const { const std::map::const_iterator it = attrs.find(key); return it != attrs.end(); } bool MXNetNode::is_attr_scalar(const char* key) const { const std::map::const_iterator it = attrs.find(key); if (it == attrs.end()) return false; if (it->second.empty()) return false; return it->second[0] != '('; } int MXNetNode::attr_i(const char* key) const { const std::map::const_iterator it = attrs.find(key); if (it == attrs.end()) return 0; if (it->second == "False") return 0; if (it->second == "True") return 1; int i = 0; int nscan = sscanf(it->second.c_str(), "%d", &i); if (nscan != 1) return 0; return i; } float MXNetNode::attr_f(const char* key) const { const std::map::const_iterator it = attrs.find(key); if (it == attrs.end()) return 0.f; float f = 0; int nscan = sscanf(it->second.c_str(), "%f", &f); if (nscan != 1) return 0.f; return f; } std::string MXNetNode::attr_s(const char* key) const { const std::map::const_iterator it = attrs.find(key); if (it == attrs.end()) return std::string(); return it->second; } std::vector MXNetNode::attr_ai(const char* key) const { const std::map::const_iterator it = attrs.find(key); if (it == attrs.end()) return std::vector(); // (1,2,3) std::vector list; if (is_attr_scalar(key)) { list.push_back(attr_i(key)); return list; } int i = 0; int c = 0; int nconsumed = 0; int nscan = sscanf(it->second.c_str() + c, "%*[\\[(,]%d%n", &i, &nconsumed); if (nscan != 1) { // (None if (strncmp(it->second.c_str() + c, "(None", 5) == 0) { i = -233; nconsumed = 5; nscan = 1; } } while (nscan == 1) { list.push_back(i); // fprintf(stderr, "%d\n", i); i = 0; c += nconsumed; nscan = sscanf(it->second.c_str() + c, "%*[(,]%d%n", &i, &nconsumed); if (nscan != 1) { // , None if (strncmp(it->second.c_str() + c, ", None", 6) == 0) { i = -233; nconsumed = 6; nscan = 1; } } } return list; } std::vector MXNetNode::attr_af(const char* key) const { const std::map::const_iterator it = attrs.find(key); if (it == attrs.end()) return std::vector(); // (0.1,0.2,0.3) std::vector list; if (is_attr_scalar(key)) { list.push_back(attr_f(key)); return list; } float i = 0.f; int c = 0; int nconsumed = 0; int nscan = sscanf(it->second.c_str() + c, "%*[(,]%f%n", &i, &nconsumed); while (nscan == 1) { list.push_back(i); // fprintf(stderr, "%f\n", i); i = 0.f; c += nconsumed; nscan = sscanf(it->second.c_str() + c, "%*[(,]%f%n", &i, &nconsumed); } return list; } bool MXNetNode::is_weight() const { for (int i = 0; i < (int)(*params).size(); i++) { const MXNetParam& p = (*params)[i]; if (p.name == name) return true; } return false; } bool MXNetNode::has_weight(int i) const { if (i < 0 || i >= (int)weights.size()) return false; const std::string& node_name = (*nodes)[weights[i]].name; for (int j = 0; j < (int)(*params).size(); j++) { const MXNetParam& p = (*params)[j]; if (p.name == node_name) return true; } return false; } std::vector MXNetNode::weight(int i, int init_len) const { if (i < 0 || i >= (int)weights.size()) return std::vector(); const std::string& node_name = (*nodes)[weights[i]].name; for (int j = 0; j < (int)(*params).size(); j++) { const MXNetParam& p = (*params)[j]; if (p.name != node_name) continue; if (!p.data.empty()) return p.data; std::vector data; if (!p.init.empty() && init_len != 0) { if (p.init == "[\\$zero\\$, {}]" || p.init == "[\\\"zero\\\", {}]" || p.init == "zeros") { data.resize(init_len, 0.f); } else if (p.init == "[\\$one\\$, {}]" || p.init == "[\\\"one\\\", {}]" || p.init == "ones") { data.resize(init_len, 1.f); } } return data; } return std::vector(); } static void replace_backslash_doublequote_dollar(char* s) { char* a = s; char* b = s + 1; while (*a && *b) { if (*a == '\\' && *b == '\"') { *b = '$'; } a++; b++; } } static void parse_input_list(const char* s, std::vector& inputs, std::vector& subinputs) { inputs.clear(); subinputs.clear(); if (memcmp(s, "[]", 2) == 0) return; int nscan = 0; int nconsumed = 0; int id; int subid; int c = 1; // skip leading [ nscan = sscanf(s + c, "[%d, %d%n", &id, &subid, &nconsumed); while (nscan == 2) { inputs.push_back(id); subinputs.push_back(subid); // fprintf(stderr, "%d %d\n", id, subid); c += nconsumed; nscan = sscanf(s + c, "%*[^[][%d, %d%n", &id, &subid, &nconsumed); } } static bool read_mxnet_json(const char* jsonpath, std::vector& nodes) { FILE* fp = fopen(jsonpath, "rb"); if (!fp) { fprintf(stderr, "fopen %s failed\n", jsonpath); return false; } int internal_unknown = 0; int internal_underscore = 0; char line[1024]; //{ char* s = fgets(line, 1024, fp); if (!s) { fprintf(stderr, "fgets %s failed\n", jsonpath); return false; } MXNetNode n; bool in_nodes_list = false; bool in_node_block = false; bool in_attr_block = false; bool in_inputs_block = false; while (!feof(fp)) { char* t = fgets(line, 1024, fp); if (!t) break; if (in_inputs_block) { // ] if (memcmp(line, " ]", 7) == 0) { in_inputs_block = false; continue; } // [439, 0, 0], int id; int subid; int nscan = sscanf(line, " [%d, %d", &id, &subid); if (nscan == 2) { n.inputs.push_back(id); n.subinputs.push_back(subid); continue; } } if (in_attr_block) { // }, if (memcmp(line, " }", 7) == 0) { in_attr_block = false; continue; } // replace \" with \$ replace_backslash_doublequote_dollar(line); // "kernel": "(7,7)", char key[256] = {0}; char value[256] = {0}; int nscan = sscanf(line, " \"%255[^\"]\": \"%255[^\"]\"", key, value); if (nscan == 2) { n.attrs[key] = value; // fprintf(stderr, "# %s = %s\n", key, value); continue; } } if (in_node_block) { // }, if (memcmp(line, " }", 5) == 0) { // new node if (n.name.empty()) { // assign default unknown name char unknownname[256]; sprintf(unknownname, "unknownncnn_%d", internal_unknown); n.name = unknownname; internal_unknown++; } if (n.name[0] == '_') { // workaround for potential duplicated _plus0 char underscorename[256]; sprintf(underscorename, "underscorencnn_%d%s", internal_underscore, n.name.c_str()); n.name = underscorename; internal_underscore++; } nodes.push_back(n); in_node_block = false; continue; } int nscan; // "op": "Convolution", char op[256] = {0}; nscan = sscanf(line, " \"op\": \"%255[^\"]\",", op); if (nscan == 1) { n.op = op; // fprintf(stderr, "op = %s\n", op); continue; } // "name": "conv0", char name[256] = {0}; nscan = sscanf(line, " \"name\": \"%255[^\"]\",", name); if (nscan == 1) { n.name = name; // fprintf(stderr, "name = %s\n", name); continue; } // "inputs": [ if (memcmp(line, " \"inputs\": [\n", 18) == 0) { in_inputs_block = true; continue; } // "inputs": [] char inputs[256] = {0}; nscan = sscanf(line, " \"inputs\": %255[^\n]", inputs); if (nscan == 1) { parse_input_list(inputs, n.inputs, n.subinputs); // fprintf(stderr, "inputs = %s\n", inputs); continue; } // "param": {}, if (memcmp(line, " \"param\": {}", 17) == 0) { continue; } // replace \" with \$ replace_backslash_doublequote_dollar(line); // "attr": {"__init__": "[\"zero\", {}]"}, char key[256] = {0}; char value[256] = {0}; nscan = sscanf(line, " \"attr\": {\"%255[^\"]\": \"%255[^\"]\"}", key, value); if (nscan == 2) { n.attrs[key] = value; // fprintf(stderr, "# %s = %s\n", key, value); continue; } // "attrs": {"__init__": "[\"zero\", {}]"}, nscan = sscanf(line, " \"attrs\": {\"%255[^\"]\": \"%255[^\"]\"}", key, value); if (nscan == 2) { n.attrs[key] = value; // fprintf(stderr, "# %s = %s\n", key, value); continue; } // "param": {"p": "0.5"}, nscan = sscanf(line, " \"param\": {\"%255[^\"]\": \"%255[^\"]\"}", key, value); if (nscan == 2) { n.attrs[key] = value; // fprintf(stderr, "# %s = %s\n", key, value); continue; } // "attr": { if (memcmp(line, " \"attr\": {", 15) == 0) { in_attr_block = true; continue; } // "attrs": { if (memcmp(line, " \"attrs\": {", 16) == 0) { in_attr_block = true; continue; } // "param": { if (memcmp(line, " \"param\": {", 16) == 0) { in_attr_block = true; continue; } } if (in_nodes_list) { // ], if (memcmp(line, " ],", 4) == 0) { in_nodes_list = false; // all nodes parsed break; } // { if (memcmp(line, " {", 5) == 0) { n = MXNetNode(); in_node_block = true; continue; } } // "nodes": [ if (memcmp(line, " \"nodes\": [", 12) == 0) { in_nodes_list = true; continue; } } fclose(fp); return true; } static bool read_mxnet_param(const char* parampath, std::vector& params) { FILE* fp = fopen(parampath, "rb"); if (!fp) { fprintf(stderr, "fopen %s failed\n", parampath); return false; } size_t nread; uint64_t header; uint64_t reserved; nread = fread(&header, sizeof(uint64_t), 1, fp); if (nread != 1) { fprintf(stderr, "read header failed %zd\n", nread); return false; } nread = fread(&reserved, sizeof(uint64_t), 1, fp); if (nread != 1) { fprintf(stderr, "read reserved failed %zd\n", nread); return false; } // NDArray vec // each data uint64_t data_count; nread = fread(&data_count, sizeof(uint64_t), 1, fp); if (nread != 1) { fprintf(stderr, "read data_count failed %zd\n", nread); return false; } // fprintf(stderr, "data count = %d\n", (int)data_count); for (int i = 0; i < (int)data_count; i++) { uint32_t magic; // 0xF993FAC9 nread = fread(&magic, sizeof(uint32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read magic failed %zd\n", nread); return false; } // shape uint32_t ndim; std::vector shape; if (magic == 0xF993FAC9) { int32_t stype; nread = fread(&stype, sizeof(int32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read stype failed %zd\n", nread); return false; } nread = fread(&ndim, sizeof(uint32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read ndim failed %zd\n", nread); return false; } shape.resize(ndim); nread = fread(&shape[0], ndim * sizeof(int64_t), 1, fp); if (nread != 1) { fprintf(stderr, "read shape failed %zd\n", nread); return false; } } else if (magic == 0xF993FAC8) { nread = fread(&ndim, sizeof(uint32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read ndim failed %zd\n", nread); return false; } shape.resize(ndim); nread = fread(&shape[0], ndim * sizeof(int64_t), 1, fp); if (nread != 1) { fprintf(stderr, "read shape failed %zd\n", nread); return false; } } else { ndim = magic; shape.resize(ndim); std::vector shape32; shape32.resize(ndim); nread = fread(&shape32[0], ndim * sizeof(uint32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read shape failed %zd\n", nread); return false; } for (int j = 0; j < (int)ndim; j++) { shape[j] = shape32[j]; } } // context int32_t dev_type; int32_t dev_id; nread = fread(&dev_type, sizeof(int32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read dev_type failed %zd\n", nread); return false; } nread = fread(&dev_id, sizeof(int32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read dev_id failed %zd\n", nread); return false; } int32_t type_flag; nread = fread(&type_flag, sizeof(int32_t), 1, fp); if (nread != 1) { fprintf(stderr, "read type_flag failed %zd\n", nread); return false; } // data size_t len = 0; if (shape.size() == 1) len = shape[0]; if (shape.size() == 2) len = shape[0] * shape[1]; if (shape.size() == 3) len = shape[0] * shape[1] * shape[2]; if (shape.size() == 4) len = shape[0] * shape[1] * shape[2] * shape[3]; MXNetParam p; p.data.resize(len); nread = fread(&p.data[0], len * sizeof(float), 1, fp); if (nread != 1) { fprintf(stderr, "read MXNetParam data failed %zd\n", nread); return false; } params.push_back(p); // fprintf(stderr, "%u read\n", len); } // each name uint64_t name_count; nread = fread(&name_count, sizeof(uint64_t), 1, fp); if (nread != 1) { fprintf(stderr, "read name_count failed %zd\n", nread); return false; } // fprintf(stderr, "name count = %d\n", (int)name_count); for (int i = 0; i < (int)name_count; i++) { uint64_t len; nread = fread(&len, sizeof(uint64_t), 1, fp); if (nread != 1) { fprintf(stderr, "read name length failed %zd\n", nread); return false; } MXNetParam& p = params[i]; p.name.resize(len); nread = fread((char*)p.name.data(), len, 1, fp); if (nread != 1) { fprintf(stderr, "read MXNetParam name failed %zd\n", nread); return false; } // cut leading arg: if (memcmp(p.name.c_str(), "arg:", 4) == 0) { p.name = std::string(p.name.c_str() + 4); } if (memcmp(p.name.c_str(), "aux:", 4) == 0) { p.name = std::string(p.name.c_str() + 4); } // fprintf(stderr, "%s read\n", p.name.c_str()); } fclose(fp); return true; } static void fuse_shufflechannel(std::vector& nodes, std::vector& params, std::map& node_reference, std::set& blob_names, int& reduced_node_count) { size_t node_count = nodes.size(); for (size_t i = 0; i < node_count; i++) { const MXNetNode& n = nodes[i]; if (n.is_weight()) continue; // ShuffleChannel <= Reshape - SwapAxis - Reshape if (n.op == "Reshape") { if (node_reference.find(i) == node_reference.end() || node_reference[i] != 1) continue; // "shape": "(0, -4, X, -1, -2)" std::vector shape = n.attr("shape"); if (shape.size() != 5) continue; if (shape[0] != 0 || shape[1] != -4 || shape[3] != -1 || shape[4] != -2) continue; if (i + 2 >= node_count) continue; const MXNetNode& n2 = nodes[i + 1]; const MXNetNode& n3 = nodes[i + 2]; if (n2.op != "SwapAxis" || n3.op != "Reshape") continue; if (node_reference.find(i + 1) == node_reference.end() || node_reference[i + 1] != 1) continue; // "dim1": "1", "dim2": "2" int dim1 = n2.attr("dim1"); int dim2 = n2.attr("dim2"); if (dim1 != 1 || dim2 != 2) continue; // "shape": "(0, -3, -2)" std::vector shape3 = n3.attr("shape"); if (shape3.size() != 3) continue; if (shape3[0] != 0 || shape3[1] != -3 || shape3[2] != -2) continue; // reduce nodes[i].op = "noop_reducedncnn"; nodes[i + 1].op = "noop_reducedncnn"; node_reference.erase(node_reference.find(i)); node_reference.erase(node_reference.find(i + 1)); blob_names.erase(n.name); blob_names.erase(n2.name); MXNetNode new_node; new_node.nodes = &nodes; new_node.params = ¶ms; new_node.op = "ShuffleChannel"; // new_node.name = n.name + "_" + n2.name + "_" + n3.name; new_node.name = n3.name; new_node.output_size = n3.output_size; char group[16]; sprintf(group, "%d", shape[2]); new_node.attrs["group"] = group; new_node.inputs = n.inputs; new_node.subinputs = n.subinputs; nodes[i + 2] = new_node; reduced_node_count += 2; i += 2; } } } static void fuse_hardsigmoid_hardswish(std::vector& nodes, std::vector& params, std::map& node_reference, std::set& blob_names, int& reduced_node_count) { size_t node_count = nodes.size(); for (size_t i = 0; i < node_count; i++) { const MXNetNode& n = nodes[i]; if (n.is_weight()) continue; if (n.op == "_plus_scalar") { // HardSigmoid <= _plus_scalar(+3) - clip(0,6) - _div_scalar(/6) const MXNetNode& n1 = nodes[i + 1]; const MXNetNode& n2 = nodes[i + 2]; const MXNetNode& n3 = nodes[i + 3]; if ((float)n.attr("scalar") != 3.f) continue; if (n1.op != "clip" || (float)n1.attr("a_min") != 0.f || (float)n1.attr("a_max") != 6.f) continue; if (n2.op != "_div_scalar" || (float)n2.attr("scalar") != 6.f) continue; // reduce nodes[i].op = "noop_reducedncnn"; nodes[i + 1].op = "noop_reducedncnn"; node_reference.erase(node_reference.find(i)); node_reference.erase(node_reference.find(i + 1)); blob_names.erase(n.name); blob_names.erase(n1.name); if (n3.op != "elemwise_mul" || n3.inputs[0] != n.inputs[0]) { MXNetNode new_node; new_node.nodes = &nodes; new_node.params = ¶ms; new_node.op = "HardSigmoid"; new_node.name = n2.name; new_node.output_size = n2.output_size; char alpha[16], beta[16]; sprintf(alpha, "%f", 1.f / 6.f); sprintf(beta, "%f", 3.f / 6.f); new_node.attrs["alpha"] = alpha; new_node.attrs["beta"] = beta; new_node.inputs = n.inputs; new_node.subinputs = n.subinputs; nodes[i + 2] = new_node; reduced_node_count += 2; i += 2; } else // HardSwish <= HardSigmoid - Mul { nodes[i + 2].op = "noop_reducedncnn"; node_reference[i - 1]--; node_reference.erase(node_reference.find(i + 2)); blob_names.erase(n2.name); MXNetNode new_node; new_node.nodes = &nodes; new_node.params = ¶ms; new_node.op = "HardSwish"; new_node.name = n3.name; new_node.output_size = n3.output_size; char alpha[16], beta[16]; sprintf(alpha, "%f", 1.f / 6.f); sprintf(beta, "%f", 3.f / 6.f); new_node.attrs["alpha"] = alpha; new_node.attrs["beta"] = beta; new_node.inputs = n.inputs; new_node.subinputs = n.subinputs; nodes[i + 3] = new_node; reduced_node_count += 3; i += 3; } } } } int main(int argc, char** argv) { if (!(argc == 3 || argc == 5)) { fprintf(stderr, "Usage: %s [mxnetjson] [mxnetparam] [ncnnparam] [ncnnbin]\n", argv[0]); return -1; } const char* jsonpath = argv[1]; const char* parampath = argv[2]; const char* ncnn_prototxt = argc == 5 ? argv[3] : "ncnn.param"; const char* ncnn_modelbin = argc == 5 ? argv[4] : "ncnn.bin"; std::vector nodes; std::vector params; read_mxnet_json(jsonpath, nodes); read_mxnet_param(parampath, params); FILE* pp = fopen(ncnn_prototxt, "wb"); FILE* bp = fopen(ncnn_modelbin, "wb"); // magic fprintf(pp, "7767517\n"); size_t node_count = nodes.size(); // node reference std::map node_reference; // weight node std::vector weight_nodes; // sometimes mxnet produce non-unique name for activation op { std::set known_names; for (size_t i = 0; i < node_count; i++) { MXNetNode& n = nodes[i]; if (known_names.find(n.name) == known_names.end()) { known_names.insert(n.name); continue; } // non-unique name detected, append index as suffix char suffix[32]; sprintf(suffix, "_%d", (int)i); n.name = n.name + std::string(suffix); } } // global definition line // [layer count] [blob count] std::set blob_names; for (size_t i = 0; i < node_count; i++) { MXNetNode& n = nodes[i]; // assign global param reference n.nodes = &nodes; n.params = ¶ms; const std::string& output_name = n.name; n.output_size = 1; if (n.op == "null") { if (n.is_weight()) { weight_nodes.push_back(i); } else { if (n.has_attr("__init__")) { // init weight param MXNetParam pi; pi.name = n.name; pi.init = (std::string)n.attr("__init__"); params.push_back(pi); weight_nodes.push_back(i); } else { // null node without data, treat it as network input } } continue; } else if (n.op == "_contrib_MultiBoxTarget") { n.output_size = 3; } else if (n.op == "SliceChannel") { n.output_size = n.attr("num_outputs"); } // distinguish weights and inputs std::vector weights; std::vector inputs; for (int j = 0; j < (int)n.inputs.size(); j++) { int input_index = n.inputs[j]; if (nodes[input_index].is_weight()) { weights.push_back(input_index); continue; } inputs.push_back(input_index); } n.inputs = inputs; n.weights = weights; if (n.op == "_contrib_MultiBoxDetection") { // reorder input blob int temp = n.inputs[0]; n.inputs[0] = n.inputs[1]; n.inputs[1] = temp; } // input for (int j = 0; j < (int)n.inputs.size(); j++) { int input_index = n.inputs[j]; int subinput_index = n.subinputs[j]; std::string input_name = nodes[input_index].name; // fprintf(stderr, "input = %s\n", input_name.c_str()); if (subinput_index != 0) { char subinputsuffix[256]; sprintf(subinputsuffix, "_subncnn_%d", subinput_index); input_name = input_name + subinputsuffix; } blob_names.insert(input_name); int input_uid = input_index | (subinput_index << 16); if (node_reference.find(input_uid) == node_reference.end()) { node_reference[input_uid] = 1; } else { node_reference[input_uid] = node_reference[input_uid] + 1; } } // output // fprintf(stderr, "output = %s\n", output_name.c_str()); blob_names.insert(output_name); for (int j = 1; j < n.output_size; j++) { char subinputsuffix[256]; sprintf(subinputsuffix, "_%d", j); std::string output_name_j = output_name + subinputsuffix; blob_names.insert(output_name_j); } } // for (std::map::iterator it = node_reference.begin(); it != node_reference.end(); it++) // { // fprintf(stderr, "ref %d %d\n", it->first, it->second); // } // op chain fusion int reduced_node_count = 0; fuse_shufflechannel(nodes, params, node_reference, blob_names, reduced_node_count); fuse_hardsigmoid_hardswish(nodes, params, node_reference, blob_names, reduced_node_count); // remove node_reference entry with reference equals to one int splitncnn_blob_count = 0; std::map::iterator it = node_reference.begin(); while (it != node_reference.end()) { if (it->second == 1) { node_reference.erase(it++); } else { splitncnn_blob_count += it->second; // fprintf(stderr, "%s %d\n", it->first.c_str(), it->second); ++it; } } // fprintf(stderr, "%d %d %d %d, %d %d\n", node_count, reduced_node_count, node_reference.size(), weight_nodes.size(), blob_names.size(), splitncnn_blob_count); fprintf(pp, "%zu %zu\n", node_count - reduced_node_count + node_reference.size() - weight_nodes.size(), blob_names.size() + splitncnn_blob_count); int internal_split = 0; for (size_t i = 0; i < node_count; i++) { const MXNetNode& n = nodes[i]; if (n.op == "noop_reducedncnn") { continue; } if (n.op == "null") { if (n.is_weight()) { continue; } fprintf(pp, "%-16s", "Input"); } else if (n.op == "_contrib_BilinearResize2D") { fprintf(pp, "%-16s", "Interp"); } else if (n.op == "_contrib_MultiBoxDetection") { fprintf(pp, "%-16s", "DetectionOutput"); } else if (n.op == "_contrib_MultiBoxPrior") { fprintf(pp, "%-16s", "PriorBox"); } else if (n.op == "_copy") { fprintf(pp, "%-16s", "Noop"); } else if (n.op == "_div_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_maximum_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_minimum_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_minus_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_mul_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_plus_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_power_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_rdiv_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "_rminus_scalar") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "abs") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "Activation") { std::string type = n.attr("act_type"); if (type == "relu") { fprintf(pp, "%-16s", "ReLU"); } else if (type == "sigmoid") { fprintf(pp, "%-16s", "Sigmoid"); } else if (type == "tanh") { fprintf(pp, "%-16s", "TanH"); } } else if (n.op == "add_n" || n.op == "ElementWiseSum") { fprintf(pp, "%-16s", "Eltwise"); } else if (n.op == "arccos") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "arcsin") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "arctan") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "BatchNorm") { fprintf(pp, "%-16s", "BatchNorm"); } else if (n.op == "broadcast_add") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "broadcast_div") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "broadcast_mul") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "broadcast_sub") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "ceil") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "clip") { fprintf(pp, "%-16s", "Clip"); } else if (n.op == "Concat") { fprintf(pp, "%-16s", "Concat"); } else if (n.op == "Convolution") { int num_group = n.attr("num_group"); if (num_group > 1) { fprintf(pp, "%-16s", "ConvolutionDepthWise"); } else { fprintf(pp, "%-16s", "Convolution"); } } else if (n.op == "cos") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "Crop") { fprintf(pp, "%-16s", "Crop"); } else if (n.op == "Deconvolution") { int num_group = n.attr("num_group"); if (num_group > 1) { fprintf(pp, "%-16s", "DeconvolutionDepthWise"); } else { fprintf(pp, "%-16s", "Deconvolution"); } } else if (n.op == "dot") { fprintf(pp, "%-16s", "Gemm"); } else if (n.op == "Dropout") { fprintf(pp, "%-16s", "Dropout"); } else if (n.op == "elemwise_add" || n.op == "_add" || n.op == "_plus" || n.op == "_Plus") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "elemwise_div" || n.op == "_div" || n.op == "_Div") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "elemwise_mul" || n.op == "_mul" || n.op == "_Mul") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "elemwise_sub" || n.op == "_sub" || n.op == "_minus" || n.op == "_Minus") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "Embedding") { fprintf(pp, "%-16s", "Embed"); } else if (n.op == "exp") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "expand_dims") { fprintf(pp, "%-16s", "ExpandDims"); } else if (n.op == "Flatten") { fprintf(pp, "%-16s", "Flatten"); } else if (n.op == "floor") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "FullyConnected") { fprintf(pp, "%-16s", "InnerProduct"); } else if (n.op == "HardSigmoid") { fprintf(pp, "%-16s", "HardSigmoid"); } else if (n.op == "HardSwish") { fprintf(pp, "%-16s", "HardSwish"); } else if (n.op == "InstanceNorm") { fprintf(pp, "%-16s", "InstanceNorm"); } else if (n.op == "L2Normalization") { fprintf(pp, "%-16s", "Normalize"); } else if (n.op == "LeakyReLU") { std::string type = n.attr("act_type"); if (type == "elu") { fprintf(pp, "%-16s", "ELU"); } else if (type == "leaky" || type.empty()) { fprintf(pp, "%-16s", "ReLU"); } else if (type == "prelu") { fprintf(pp, "%-16s", "PReLU"); } } else if (n.op == "LinearRegressionOutput") { fprintf(pp, "%-16s", "Noop"); } else if (n.op == "log") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "LogisticRegressionOutput") { fprintf(pp, "%-16s", "Sigmoid"); } else if (n.op == "MAERegressionOutput") { fprintf(pp, "%-16s", "Noop"); } else if (n.op == "max" || n.op == "mean" || n.op == "min" || n.op == "prod" || n.op == "sum") { fprintf(pp, "%-16s", "Reduction"); } else if (n.op == "maximum") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "minimum") { fprintf(pp, "%-16s", "BinaryOp"); } else if (n.op == "negative") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "Pad") { fprintf(pp, "%-16s", "Padding"); } else if (n.op == "Pooling") { fprintf(pp, "%-16s", "Pooling"); } else if (n.op == "reciprocal") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "relu") { fprintf(pp, "%-16s", "ReLU"); } else if (n.op == "Reshape") { fprintf(pp, "%-16s", "Reshape"); } else if (n.op == "ShuffleChannel") { fprintf(pp, "%-16s", "ShuffleChannel"); } else if (n.op == "sigmoid") { fprintf(pp, "%-16s", "Sigmoid"); } else if (n.op == "sin") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "slice") { fprintf(pp, "%-16s", "Crop"); } else if (n.op == "slice_axis") { fprintf(pp, "%-16s", "Crop"); } else if (n.op == "SliceChannel") { fprintf(pp, "%-16s", "Slice"); } else if (n.op == "SoftmaxActivation") { fprintf(pp, "%-16s", "Softmax"); } else if (n.op == "SoftmaxOutput") { fprintf(pp, "%-16s", "Softmax"); } else if (n.op == "softmax") { fprintf(pp, "%-16s", "Softmax"); } else if (n.op == "sqrt") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "square") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "squeeze") { fprintf(pp, "%-16s", "Squeeze"); } else if (n.op == "tan") { fprintf(pp, "%-16s", "UnaryOp"); } else if (n.op == "tanh") { fprintf(pp, "%-16s", "TanH"); } else if (n.op == "Transpose" || n.op == "transpose") { fprintf(pp, "%-16s", "Permute"); } else if (n.op == "UpSampling") { std::string sample_type = n.attr("sample_type"); if (sample_type == "nearest") { fprintf(pp, "%-16s", "Interp"); } else if (sample_type == "bilinear") { fprintf(pp, "%-16s", "DeconvolutionDepthWise"); } } else { fprintf(stderr, "%s not supported yet!\n", n.op.c_str()); fprintf(pp, "%-16s", n.op.c_str()); } size_t input_size = n.inputs.size(); for (int j = 0; j < (int)n.inputs.size(); j++) { int input_index = n.inputs[j]; if (nodes[input_index].is_weight()) { input_size--; } } if (n.op == "SoftmaxOutput" || n.op == "LogisticRegressionOutput") { // drop label input_size--; } fprintf(pp, " %-32s %zd %d", n.name.c_str(), input_size, n.output_size); for (int j = 0; j < (int)n.inputs.size(); j++) { int input_index = n.inputs[j]; int subinput_index = n.subinputs[j]; if (nodes[input_index].is_weight()) { continue; } if (n.op == "SoftmaxOutput" || n.op == "LogisticRegressionOutput") { // drop label if (j == 1) continue; } std::string input_name = nodes[input_index].name; if (subinput_index != 0) { char subinputsuffix[256]; sprintf(subinputsuffix, "_subncnn_%d", subinput_index); input_name = input_name + subinputsuffix; } int input_uid = input_index | (subinput_index << 16); if (node_reference.find(input_uid) != node_reference.end()) { int refidx = node_reference[input_uid] - 1; node_reference[input_uid] = refidx; char splitsuffix[256]; sprintf(splitsuffix, "_splitncnn_%d", refidx); input_name = input_name + splitsuffix; } fprintf(pp, " %s", input_name.c_str()); } fprintf(pp, " %s", n.name.c_str()); for (int j = 1; j < n.output_size; j++) { fprintf(pp, " %s_subncnn_%d", n.name.c_str(), j); } if (n.op == "null") { // dummy input shape // fprintf(pp, " 0 0 0"); } else if (n.op == "_contrib_BilinearResize2D") { float scale_height = n.has_attr("scale_height") ? n.attr("scale_height") : 1.f; float scale_width = n.has_attr("scale_width") ? n.attr("scale_width") : 1.f; int height = n.has_attr("scale_height") ? 0 : n.attr("height"); int width = n.has_attr("scale_width") ? 0 : n.attr("width"); fprintf(pp, " 0=2"); fprintf(pp, " 1=%e", scale_height); fprintf(pp, " 2=%e", scale_width); fprintf(pp, " 3=%d", height); fprintf(pp, " 4=%d", width); } else if (n.op == "_contrib_MultiBoxDetection") { float threshold = n.has_attr("threshold") ? n.attr("threshold") : 0.01f; float nms_threshold = n.has_attr("nms_threshold") ? n.attr("nms_threshold") : 0.5f; int nms_topk = n.has_attr("nms_topk") ? n.attr("nms_topk") : 300; fprintf(pp, " 0=-233"); fprintf(pp, " 1=%e", nms_threshold); fprintf(pp, " 2=%d", nms_topk); int keep_top_k = 100; fprintf(pp, " 3=%d", keep_top_k); fprintf(pp, " 4=%e", threshold); std::vector variances = n.attr("variances"); if (variances.empty()) { fprintf(pp, " 5=0.1"); fprintf(pp, " 6=0.1"); fprintf(pp, " 7=0.2"); fprintf(pp, " 8=0.2"); } else { fprintf(pp, " 5=%e", variances[0]); fprintf(pp, " 6=%e", variances[1]); fprintf(pp, " 7=%e", variances[2]); fprintf(pp, " 8=%e", variances[3]); } } else if (n.op == "_contrib_MultiBoxPrior") { // mxnet-ssd encode size as scale factor, fill min_size std::vector sizes = n.attr("sizes"); fprintf(pp, " -23300=%d", (int)sizes.size()); for (int j = 0; j < (int)sizes.size(); j++) { fprintf(pp, ",%e", sizes[j]); } std::vector aspect_ratios = n.attr("ratios"); fprintf(pp, " -23302=%d", (int)aspect_ratios.size()); for (int j = 0; j < (int)aspect_ratios.size(); j++) { fprintf(pp, ",%e", aspect_ratios[j]); } int flip = 0; fprintf(pp, " 7=%d", flip); int clip = n.attr("clip"); fprintf(pp, " 8=%d", clip); // auto image size fprintf(pp, " 9=-233"); fprintf(pp, " 10=-233"); std::vector steps = n.attr("steps"); if (steps.empty() || (steps[0] == -1.f && steps[1] == -1.f)) { // auto step fprintf(pp, " 11=-233.0"); fprintf(pp, " 12=-233.0"); } else { fprintf(pp, " 11=%e", steps[1]); fprintf(pp, " 12=%e", steps[0]); } std::vector offsets = n.attr("offsets"); if (offsets.empty() || (offsets[0] == 0.5f && offsets[1] == 0.5f)) { fprintf(pp, " 13=0.5"); } else { fprintf(stderr, "Unsupported offsets param! %g %g\n", offsets[0], offsets[1]); } } else if (n.op == "_copy") { // noop } else if (n.op == "_div_scalar") { int op_type = 3; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_maximum_scalar") { int op_type = 4; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_minimum_scalar") { int op_type = 5; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_minus_scalar") { int op_type = 1; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_mul_scalar") { int op_type = 2; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_plus_scalar") { int op_type = 0; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_power_scalar") { int op_type = 6; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_rdiv_scalar") { int op_type = 8; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "_rminus_scalar") { int op_type = 7; int with_scalar = 1; float scalar = n.attr("scalar"); fprintf(pp, " 0=%d", op_type); fprintf(pp, " 1=%d", with_scalar); fprintf(pp, " 2=%e", scalar); } else if (n.op == "abs") { int op_type = 0; fprintf(pp, " 0=%d", op_type); } else if (n.op == "Activation") { std::string type = n.attr("act_type"); if (type == "relu") { // fprintf(pp, " 0=%e", 0.f); } } else if (n.op == "add_n" || n.op == "ElementWiseSum") { int op_type = 1; fprintf(pp, " 0=%d", op_type); } else if (n.op == "arccos") { int op_type = 13; fprintf(pp, " 0=%d", op_type); } else if (n.op == "arcsin") { int op_type = 12; fprintf(pp, " 0=%d", op_type); } else if (n.op == "arctan") { int op_type = 14; fprintf(pp, " 0=%d", op_type); } else if (n.op == "BatchNorm") { float eps = 1e-3f; if (n.has_attr("eps")) { eps = n.attr("eps"); } std::vector slope_data = n.weight(0); std::vector bias_data = n.weight(1); int channels = static_cast(slope_data.size()); std::vector mean_data = n.weight(2, channels); std::vector var_data = n.weight(3, channels); for (int j = 0; j < (int)var_data.size(); j++) { var_data[j] += eps; } fprintf(pp, " 0=%d", channels); int fix_gamma = n.has_attr("fix_gamma") ? n.attr("fix_gamma") : 0; if (fix_gamma) { // slope data are all 0 here, force set 1 for (int j = 0; j < channels; j++) { slope_data[j] = 1.f; } } fwrite(slope_data.data(), sizeof(float), slope_data.size(), bp); fwrite(mean_data.data(), sizeof(float), mean_data.size(), bp); fwrite(var_data.data(), sizeof(float), var_data.size(), bp); fwrite(bias_data.data(), sizeof(float), bias_data.size(), bp); } else if (n.op == "broadcast_add") { int op_type = 0; fprintf(pp, " 0=%d", op_type); } else if (n.op == "broadcast_div") { int op_type = 3; fprintf(pp, " 0=%d", op_type); } else if (n.op == "broadcast_mul") { int op_type = 2; fprintf(pp, " 0=%d", op_type); } else if (n.op == "broadcast_sub") { int op_type = 1; fprintf(pp, " 0=%d", op_type); } else if (n.op == "ceil") { int op_type = 3; fprintf(pp, " 0=%d", op_type); } else if (n.op == "clip") { float min = n.attr("a_min"); float max = n.attr("a_max"); fprintf(pp, " 0=%e", min); fprintf(pp, " 1=%e", max); } else if (n.op == "Concat") { int dim = n.has_attr("dim") ? n.attr("dim") : 1; fprintf(pp, " 0=%d", dim - 1); } else if (n.op == "Convolution") { int num_filter = n.attr("num_filter"); std::vector kernel = n.attr("kernel"); std::vector dilate = n.attr("dilate"); std::vector stride = n.attr("stride"); std::vector pad = n.attr("pad"); int no_bias = n.attr("no_bias"); int num_group = n.attr("num_group"); std::vector weight_data = n.weight(0); std::vector bias_data = n.weight(1); fprintf(pp, " 0=%d", num_filter); if (kernel.size() == 1) { fprintf(pp, " 1=%d", kernel[0]); } else if (kernel.size() == 2) { fprintf(pp, " 1=%d", kernel[1]); fprintf(pp, " 11=%d", kernel[0]); } if (dilate.size() == 1) { fprintf(pp, " 2=%d", dilate[0]); } else if (dilate.size() == 2) { fprintf(pp, " 2=%d", dilate[1]); fprintf(pp, " 12=%d", dilate[0]); } if (stride.size() == 1) { fprintf(pp, " 3=%d", stride[0]); } else if (stride.size() == 2) { fprintf(pp, " 3=%d", stride[1]); fprintf(pp, " 13=%d", stride[0]); } if (pad.size() == 1) { fprintf(pp, " 4=%d", pad[0]); } else if (pad.size() == 2) { fprintf(pp, " 4=%d", pad[1]); fprintf(pp, " 14=%d", pad[0]); } fprintf(pp, " 5=%d", no_bias == 1 ? 0 : 1); fprintf(pp, " 6=%d", (int)weight_data.size()); if (num_group > 1) { fprintf(pp, " 7=%d", num_group); } int quantize_tag = 0; fwrite(&quantize_tag, sizeof(int), 1, bp); fwrite(weight_data.data(), sizeof(float), weight_data.size(), bp); fwrite(bias_data.data(), sizeof(float), bias_data.size(), bp); } else if (n.op == "cos") { int op_type = 10; fprintf(pp, " 0=%d", op_type); } else if (n.op == "Crop") { int num_args = n.attr("num_args"); std::vector offset = n.attr("offset"); int woffset = 0; int hoffset = 0; if (offset.size() == 2) { woffset = offset[1]; hoffset = offset[0]; } fprintf(pp, " 0=%d", woffset); fprintf(pp, " 1=%d", hoffset); fprintf(pp, " 2=0"); if (num_args == 1) { std::vector h_w = n.attr("h_w"); fprintf(pp, " 3=%d", h_w[1]); fprintf(pp, " 4=%d", h_w[0]); fprintf(pp, " 5=0"); } } else if (n.op == "Deconvolution") { int num_filter = n.attr("num_filter"); std::vector kernel = n.attr("kernel"); std::vector dilate = n.attr("dilate"); std::vector stride = n.attr("stride"); std::vector pad = n.attr("pad"); std::vector adj = n.attr("adj"); std::vector target_shape = n.attr("target_shape"); int no_bias = n.attr("no_bias"); int num_group = n.attr("num_group"); std::vector weight_data = n.weight(0); std::vector bias_data = n.weight(1); fprintf(pp, " 0=%d", num_filter); if (kernel.size() == 1) { fprintf(pp, " 1=%d", kernel[0]); } else if (kernel.size() == 2) { fprintf(pp, " 1=%d", kernel[1]); fprintf(pp, " 11=%d", kernel[0]); } if (dilate.size() == 1) { fprintf(pp, " 2=%d", dilate[0]); } else if (dilate.size() == 2) { fprintf(pp, " 2=%d", dilate[1]); fprintf(pp, " 12=%d", dilate[0]); } if (stride.size() == 1) { fprintf(pp, " 3=%d", stride[0]); } else if (stride.size() == 2) { fprintf(pp, " 3=%d", stride[1]); fprintf(pp, " 13=%d", stride[0]); } if (target_shape.size() == 0) { if (pad.size() == 1) { fprintf(pp, " 4=%d", pad[0]); } else if (pad.size() == 2) { fprintf(pp, " 4=%d", pad[1]); fprintf(pp, " 14=%d", pad[0]); } if (adj.size() == 1) { fprintf(pp, " 18=%d", adj[0]); } else if (adj.size() == 2) { fprintf(pp, " 18=%d", adj[1]); fprintf(pp, " 19=%d", adj[0]); } } else { fprintf(pp, " 4=-233"); if (target_shape.size() == 1) { fprintf(pp, " 20=%d", target_shape[0]); } else if (target_shape.size() == 2) { fprintf(pp, " 20=%d", target_shape[1]); fprintf(pp, " 21=%d", target_shape[0]); } } fprintf(pp, " 5=%d", no_bias == 1 ? 0 : 1); fprintf(pp, " 6=%d", (int)weight_data.size()); if (num_group > 1) { fprintf(pp, " 7=%d", num_group); } int quantize_tag = 0; fwrite(&quantize_tag, sizeof(int), 1, bp); int maxk = 0; if (kernel.size() == 2) { maxk = kernel[1] * kernel[0]; } else { maxk = kernel[0] * kernel[0]; } for (int g = 0; g < num_group; g++) { // reorder weight from inch-outch to outch-inch int num_filter_g = num_filter / num_group; int num_input = static_cast(weight_data.size() / maxk / num_filter_g / num_group); const float* weight_data_ptr = weight_data.data() + g * maxk * num_filter_g * num_input; for (int k = 0; k < num_filter_g; k++) { for (int j = 0; j < num_input; j++) { fwrite(weight_data_ptr + (j * num_filter_g + k) * maxk, sizeof(float), maxk, bp); } } } fwrite(bias_data.data(), sizeof(float), bias_data.size(), bp); } else if (n.op == "dot") { int transpose_a = n.attr("transpose_a"); int transpose_b = n.attr("transpose_b"); fprintf(pp, " 0=1.0"); // alpha fprintf(pp, " 1=1.0"); // beta fprintf(pp, " 2=%d", transpose_a); fprintf(pp, " 3=%d", transpose_b); } else if (n.op == "Dropout") { // float p = n.attr("p"); // fprintf(pp, " 0=%d", p); } else if (n.op == "elemwise_add" || n.op == "_add" || n.op == "_plus" || n.op == "_Plus") { int op_type = 0; fprintf(pp, " 0=%d", op_type); } else if (n.op == "elemwise_div" || n.op == "_div" || n.op == "_Div") { int op_type = 3; fprintf(pp, " 0=%d", op_type); } else if (n.op == "elemwise_mul" || n.op == "_mul" || n.op == "_Mul") { int op_type = 2; fprintf(pp, " 0=%d", op_type); } else if (n.op == "elemwise_sub" || n.op == "_sub" || n.op == "_minus" || n.op == "_Minus") { int op_type = 1; fprintf(pp, " 0=%d", op_type); } else if (n.op == "Embedding") { int input_dim = n.attr("input_dim"); int output_dim = n.attr("output_dim"); std::vector weight_data = n.weight(0); fprintf(pp, " 0=%d", output_dim); fprintf(pp, " 1=%d", input_dim); fprintf(pp, " 3=%d", (int)weight_data.size()); int quantize_tag = 0; fwrite(&quantize_tag, sizeof(int), 1, bp); fwrite(weight_data.data(), sizeof(float), weight_data.size(), bp); } else if (n.op == "exp") { int op_type = 7; fprintf(pp, " 0=%d", op_type); } else if (n.op == "expand_dims") { int axis = n.attr("axis"); fprintf(pp, " -23303=1,%d", axis); } else if (n.op == "Flatten") { // no param } else if (n.op == "floor") { int op_type = 2; fprintf(pp, " 0=%d", op_type); } else if (n.op == "FullyConnected") { int num_hidden = n.attr("num_hidden"); int no_bias = n.attr("no_bias"); // int flatten = n.attr("flatten"); // TODO flatten std::vector weight_data = n.weight(0); std::vector bias_data = n.weight(1); fprintf(pp, " 0=%d", num_hidden); fprintf(pp, " 1=%d", no_bias == 1 ? 0 : 1); fprintf(pp, " 2=%d", (int)weight_data.size()); int quantize_tag = 0; fwrite(&quantize_tag, sizeof(int), 1, bp); fwrite(weight_data.data(), sizeof(float), weight_data.size(), bp); fwrite(bias_data.data(), sizeof(float), bias_data.size(), bp); } else if (n.op == "HardSigmoid") { float alpha = n.attr("alpha"); float beta = n.attr("beta"); fprintf(pp, " 0=%e", alpha); fprintf(pp, " 1=%e", beta); } else if (n.op == "HardSwish") { float alpha = n.attr("alpha"); float beta = n.attr("beta"); fprintf(pp, " 0=%e", alpha); fprintf(pp, " 1=%e", beta); } else if (n.op == "InstanceNorm") { float eps = n.has_attr("eps") ? n.attr("eps") : 0.001f; std::vector gamma_data = n.weight(0); std::vector beta_data = n.weight(1); fprintf(pp, " 0=%d", (int)gamma_data.size()); fprintf(pp, " 1=%e", eps); fwrite(gamma_data.data(), sizeof(float), gamma_data.size(), bp); fwrite(beta_data.data(), sizeof(float), beta_data.size(), bp); } else if (n.op == "L2Normalization") { std::string mode = n.attr("mode"); float eps = n.has_attr("eps") ? n.attr("eps") : 1e-10f; int across_spatial = 0; int across_channel = 1; int channel_shared = 1; int scale_data_size = 1; if (mode == "instance") { across_spatial = 1; across_channel = 1; } else if (mode == "channel") { across_spatial = 0; across_channel = 1; } else if (mode == "spatial") { across_spatial = 1; across_channel = 0; } fprintf(pp, " 0=%d", across_spatial); fprintf(pp, " 4=%d", across_channel); fprintf(pp, " 1=%d", channel_shared); fprintf(pp, " 2=%e", eps); fprintf(pp, " 3=%d", scale_data_size); const float scale_data[1] = {1.f}; fwrite(scale_data, sizeof(float), 1, bp); } else if (n.op == "LeakyReLU") { std::string type = n.attr("act_type"); if (type == "elu") { float slope = n.has_attr("slope") ? n.attr("slope") : 0.25f; fprintf(pp, " 0=%e", slope); } else if (type == "leaky" || type.empty()) { float slope = n.has_attr("slope") ? n.attr("slope") : 0.25f; fprintf(pp, " 0=%e", slope); } else if (type == "prelu") { std::vector weight_data = n.weight(0); fprintf(pp, " 0=%d", (int)weight_data.size()); fwrite(weight_data.data(), sizeof(float), weight_data.size(), bp); } } else if (n.op == "LinearRegressionOutput") { // noop } else if (n.op == "log") { int op_type = 8; fprintf(pp, " 0=%d", op_type); } else if (n.op == "LogisticRegressionOutput") { // noop } else if (n.op == "MAERegressionOutput") { // noop } else if (n.op == "max" || n.op == "mean" || n.op == "min" || n.op == "prod" || n.op == "sum") { int operation = -233; if (n.op == "max") operation = 4; if (n.op == "mean") operation = 3; if (n.op == "min") operation = 5; if (n.op == "prod") operation = 6; if (n.op == "sum") operation = 0; std::vector axis = n.attr("axis"); int keepdims = n.attr("keepdims"); fprintf(pp, " 0=%d", operation); if (axis.empty()) { // if axis not set, reduce all axis by default fprintf(pp, " 1=%d", 1); } else { // if axis set, reduce according to axis fprintf(pp, " 1=%d", 0); fprintf(pp, " -23303=%zd", axis.size()); for (size_t j = 0; j < axis.size(); j++) { if (axis[j] == 0 || axis[j] > 4 || axis[j] < -3) fprintf(stderr, "Unsupported reduction axis !\n"); fprintf(pp, ",%d", axis[j] > 0 ? axis[j] - 1 : axis[j]); } } fprintf(pp, " 4=%d", keepdims); fprintf(pp, " 5=1"); } else if (n.op == "maximum") { int op_type = 4; fprintf(pp, " 0=%d", op_type); } else if (n.op == "minimum") { int op_type = 5; fprintf(pp, " 0=%d", op_type); } else if (n.op == "negative") { int op_type = 1; fprintf(pp, " 0=%d", op_type); } else if (n.op == "Pad") { std::string mode = n.attr("mode"); std::vector pad_width = n.attr("pad_width"); float constant_value = n.attr("constant_value"); int type = 0; if (mode == "constant") { type = 0; } else if (mode == "edge") { type = 1; } else if (mode == "reflect") { type = 2; } if (pad_width.size() != 8) { fprintf(stderr, "Unsupported pad_width !\n"); } int channel_before = pad_width[2]; int channel_after = pad_width[3]; int top = pad_width[4]; int bottom = pad_width[5]; int left = pad_width[6]; int right = pad_width[7]; fprintf(pp, " 0=%d", top); fprintf(pp, " 1=%d", bottom); fprintf(pp, " 2=%d", left); fprintf(pp, " 3=%d", right); fprintf(pp, " 4=%d", type); fprintf(pp, " 5=%e", constant_value); fprintf(pp, " 7=%d", channel_before); fprintf(pp, " 8=%d", channel_after); } else if (n.op == "Pooling") { std::string pool_type = n.attr("pool_type"); std::vector kernel = n.attr("kernel"); std::vector stride = n.attr("stride"); std::vector pad = n.attr("pad"); std::string pooling_convention = n.attr("pooling_convention"); int global_pool = n.attr("global_pool"); int pool = 0; if (pool_type == "max") { pool = 0; } else if (pool_type == "avg") { pool = 1; } int pad_mode = 1; if (pooling_convention == "valid") { pad_mode = 1; } else if (pooling_convention == "full") { pad_mode = 0; } fprintf(pp, " 0=%d", pool); if (kernel.size() == 1) { fprintf(pp, " 1=%d", kernel[0]); } else if (kernel.size() == 2) { fprintf(pp, " 1=%d", kernel[1]); fprintf(pp, " 11=%d", kernel[0]); } if (stride.size() == 1) { fprintf(pp, " 2=%d", stride[0]); } else if (stride.size() == 2) { fprintf(pp, " 2=%d", stride[1]); fprintf(pp, " 12=%d", stride[0]); } if (pad.size() == 1) { fprintf(pp, " 3=%d", pad[0]); } else if (pad.size() == 2) { fprintf(pp, " 3=%d", pad[1]); fprintf(pp, " 13=%d", pad[0]); } fprintf(pp, " 4=%d", global_pool); fprintf(pp, " 5=%d", pad_mode); if (pool_type == "avg") { int avgpool_count_include_pad = n.has_attr("count_include_pad") ? n.attr("count_include_pad") : 0; fprintf(pp, " 6=%d", avgpool_count_include_pad); } } else if (n.op == "reciprocal") { int op_type = 15; fprintf(pp, " 0=%d", op_type); } else if (n.op == "relu") { // no param } else if (n.op == "Reshape") { std::vector shape = n.attr("shape"); if (shape.size() == 1) { fprintf(pp, " 0=%d", shape[0]); // should never reach here } else if (shape.size() == 2) { fprintf(pp, " 0=%d", shape[1]); } else if (shape.size() == 3) { fprintf(pp, " 0=%d", shape[2]); fprintf(pp, " 1=%d", shape[1]); } else if (shape.size() == 4) { fprintf(pp, " 0=%d", shape[3]); fprintf(pp, " 1=%d", shape[2]); fprintf(pp, " 2=%d", shape[1]); } else if (shape.size() == 5) { fprintf(pp, " 0=%d", shape[4] * shape[3]); fprintf(pp, " 1=%d", shape[2]); fprintf(pp, " 2=%d", shape[1]); } } else if (n.op == "ShuffleChannel") { int group = n.attr("group"); fprintf(pp, " 0=%d", group); } else if (n.op == "sigmoid") { // no param } else if (n.op == "sin") { int op_type = 9; fprintf(pp, " 0=%d", op_type); } else if (n.op == "slice") { std::vector begin = n.attr("begin"); std::vector end = n.attr("end"); std::vector step = n.attr("step"); // TODO // skip N-dim begin.erase(begin.begin()); end.erase(end.begin()); if (step.size() != 0) step.erase(step.begin()); // assert step == 1 for (size_t j = 0; j < step.size(); j++) { if (step[j] != 1) fprintf(stderr, "Unsupported slice step !\n"); } fprintf(pp, " -23309=%d", (int)begin.size()); for (size_t j = 0; j < begin.size(); j++) { fprintf(pp, ",%d", begin[j]); } fprintf(pp, " -23310=%d", (int)end.size()); for (size_t j = 0; j < end.size(); j++) { fprintf(pp, ",%d", end[j]); } } else if (n.op == "slice_axis") { int axis = n.attr("axis"); int begin = n.attr("begin"); int end = n.has_attr("end") ? n.attr("end") : INT_MAX; if (axis == 0 || axis > 3 || axis < -3) fprintf(stderr, "Unsupported slice_axis axes !\n"); if (axis > 0) axis = axis - 1; // -1 for skip N-dim fprintf(pp, " -23309=1,%d", begin); fprintf(pp, " -23310=1,%d", end); fprintf(pp, " -23311=1,%d", axis); } else if (n.op == "SliceChannel") { int num_outputs = n.attr("num_outputs"); int squeeze_axis = n.attr("squeeze_axis"); // TODO if (squeeze_axis) { fprintf(stderr, "Unsupported SliceChannel squeeze_axis !\n"); } fprintf(pp, " -23300=%d", num_outputs); for (int j = 0; j < num_outputs; j++) { fprintf(pp, ",-233"); } } else if (n.op == "SoftmaxActivation") { std::string mode = n.attr("mode"); if (mode != "channel") { fprintf(stderr, "Unsupported SoftmaxActivation mode !\n"); } fprintf(pp, " 1=1"); } else if (n.op == "SoftmaxOutput") { fprintf(pp, " 1=1"); } else if (n.op == "softmax") { fprintf(pp, " 1=1"); } else if (n.op == "sqrt") { int op_type = 5; fprintf(pp, " 0=%d", op_type); } else if (n.op == "square") { int op_type = 4; fprintf(pp, " 0=%d", op_type); } else if (n.op == "squeeze") { std::vector axis = n.attr("axis"); if (axis.empty()) { fprintf(pp, " 0=1"); fprintf(pp, " 1=1"); fprintf(pp, " 2=1"); } else { fprintf(pp, " -23303=%zd", axis.size()); for (size_t j = 0; j < axis.size(); j++) { fprintf(pp, ",%d", axis[j]); } } } else if (n.op == "tan") { int op_type = 11; fprintf(pp, " 0=%d", op_type); } else if (n.op == "tanh") { // no param } else if (n.op == "Transpose" || n.op == "transpose") { std::vector axes = n.attr("axes"); if (axes.size() == 3) { if (axes[1] == 2 && axes[2] == 1) fprintf(pp, " 0=1"); // h w c else fprintf(stderr, "Unsupported transpose type !\n"); } else if (axes.size() == 4) { if (axes[1] == 1 && axes[2] == 2 && axes[3] == 3) fprintf(pp, " 0=0"); // w h c else if (axes[1] == 1 && axes[2] == 3 && axes[3] == 2) fprintf(pp, " 0=1"); // h w c else if (axes[1] == 2 && axes[2] == 1 && axes[3] == 3) fprintf(pp, " 0=2"); // w c h else if (axes[1] == 2 && axes[2] == 3 && axes[3] == 1) fprintf(pp, " 0=3"); // c w h else if (axes[1] == 3 && axes[2] == 1 && axes[3] == 2) fprintf(pp, " 0=4"); // h c w else if (axes[1] == 3 && axes[2] == 2 && axes[3] == 1) fprintf(pp, " 0=5"); // c h w } else if (axes.size() == 5) { if (axes[1] == 1 && axes[2] == 2 && axes[3] == 3 && axes[4] == 4) fprintf(pp, " 0=0"); // wx h c else if (axes[1] == 1 && axes[2] == 3 && axes[3] == 4 && axes[4] == 2) fprintf(pp, " 0=1"); // h wx c else if (axes[1] == 2 && axes[2] == 1 && axes[3] == 3 && axes[4] == 4) fprintf(pp, " 0=2"); // wx c h else if (axes[1] == 2 && axes[2] == 3 && axes[3] == 4 && axes[4] == 1) fprintf(pp, " 0=3"); // c wx h else if (axes[1] == 3 && axes[2] == 4 && axes[3] == 1 && axes[4] == 2) fprintf(pp, " 0=4"); // h c wx else if (axes[1] == 3 && axes[2] == 4 && axes[3] == 2 && axes[4] == 1) fprintf(pp, " 0=5"); // c h wx else fprintf(stderr, "Unsupported transpose type !\n"); } else { fprintf(stderr, "Unsupported transpose type !\n"); } } else if (n.op == "UpSampling") { int scale = n.attr("scale"); std::string sample_type = n.attr("sample_type"); if (sample_type == "nearest") { fprintf(pp, " 0=1"); fprintf(pp, " 1=%e", (float)scale); fprintf(pp, " 2=%e", (float)scale); } else if (sample_type == "bilinear") { // DeconvolutionDepthWise int num_filter = n.attr("num_filter"); std::vector weight_data = n.weight(0); int kernel = scale * 2 - scale % 2; int stride = scale; int pad = (scale - 1) / 2; fprintf(pp, " 0=%d", num_filter); fprintf(pp, " 1=%d", kernel); fprintf(pp, " 2=1"); fprintf(pp, " 3=%d", stride); fprintf(pp, " 4=%d", pad); fprintf(pp, " 5=0"); fprintf(pp, " 6=%d", (int)weight_data.size()); fprintf(pp, " 7=%d", num_filter); int quantize_tag = 0; fwrite(&quantize_tag, sizeof(int), 1, bp); fwrite(weight_data.data(), sizeof(float), weight_data.size(), bp); } } else { // TODO op specific params std::map::const_iterator attr_it = n.attrs.begin(); for (; attr_it != n.attrs.end(); attr_it++) { fprintf(stderr, "# %s=%s\n", attr_it->first.c_str(), attr_it->second.c_str()); // fprintf(pp, " %s=%s", attr_it->first.c_str(), attr_it->second.c_str()); } } fprintf(pp, "\n"); for (int j = 0; j < n.output_size; j++) { int input_uid = i | (j << 16); if (node_reference.find(input_uid) != node_reference.end()) { int refcount = node_reference[input_uid]; if (refcount > 1) { std::string output_name = n.name; char splitname[256]; sprintf(splitname, "splitncnn_%d", internal_split); fprintf(pp, "%-16s %-32s %d %d", "Split", splitname, 1, refcount); if (j == 0) { fprintf(pp, " %s", output_name.c_str()); } else { fprintf(pp, " %s_subncnn_%d", output_name.c_str(), j); } for (int k = 0; k < refcount; k++) { if (j == 0) { fprintf(pp, " %s_splitncnn_%d", output_name.c_str(), k); } else { fprintf(pp, " %s_subncnn_%d_splitncnn_%d", output_name.c_str(), j, k); } } fprintf(pp, "\n"); internal_split++; } } } } fclose(pp); fclose(bp); return 0; }