// BUG1989 is pleased to support the open source community by supporting ncnn available. // // Copyright (C) 2019 BUG1989. All rights reserved. // // Licensed under the BSD 3-Clause License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // https://opensource.org/licenses/BSD-3-Clause // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include #include #include #include #include // ncnn public header #include "datareader.h" #include "layer.h" #include "layer_type.h" #include "net.h" // ncnn private header #include "../modelwriter.h" class DataReaderFromEmpty : public ncnn::DataReader { public: virtual int scan(const char* format, void* p) const { return 0; } virtual size_t read(void* buf, size_t size) const { memset(buf, 0, size); return size; } }; static bool read_int8scale_table(const char* filepath, std::map& blob_int8scale_table, std::map& weight_int8scale_table) { blob_int8scale_table.clear(); weight_int8scale_table.clear(); FILE* fp = fopen(filepath, "rb"); if (!fp) { fprintf(stderr, "Open %s failed.\n", filepath); return false; } std::string key_str; std::vector scales; std::vector line(10240000); char* pch = NULL; size_t len = 0; while (!feof(fp)) { char* s = fgets(line.data(), (int)line.size(), fp); if (!s) break; float scale = 1.f; char key[256]; line[strcspn(line.data(), "\r\n")] = 0; pch = strtok(line.data(), " "); if (pch == NULL) break; bool is_key = true; while (pch != NULL) { if (is_key) { sscanf(pch, "%255s", key); key_str = key; is_key = false; } else { sscanf(pch, "%f", &scale); scales.push_back(scale); } pch = strtok(NULL, " "); } // XYZ_param_N pattern if (strstr(key_str.c_str(), "_param_")) { weight_int8scale_table[key_str] = ncnn::Mat((int)scales.size(), (void*)scales.data()).clone(); } else { blob_int8scale_table[key_str] = ncnn::Mat((int)scales.size(), (void*)scales.data()).clone(); } key_str.clear(); scales.clear(); } fclose(fp); return true; } class NetQuantize : public ModelWriter { public: NetQuantize(); std::map blob_int8scale_table; std::map weight_int8scale_table; public: int quantize_convolution(); int quantize_convolutiondepthwise(); int quantize_innerproduct(); int fuse_requantize(); }; NetQuantize::NetQuantize() : ModelWriter() { } int NetQuantize::quantize_convolution() { const int layer_count = static_cast(layers.size()); for (int i = 0; i < layer_count; i++) { // find convolution layer if (layers[i]->type != "Convolution") continue; // find convolution layer std::map::iterator iter_data = blob_int8scale_table.find(layers[i]->name); if (iter_data == blob_int8scale_table.end()) continue; char key[256]; sprintf(key, "%s_param_0", layers[i]->name.c_str()); std::map::iterator iter = weight_int8scale_table.find(key); if (iter == weight_int8scale_table.end()) { fprintf(stderr, "this layer need to be quantized, but no scale param!\n"); return -1; } // Convolution - quantize weight from fp32 to int8 ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i]; ncnn::Mat bottom_blob_int8_scales = iter_data->second; ncnn::Mat weight_data_int8_scales = iter->second; fprintf(stderr, "quantize_convolution %s\n", convolution->name.c_str()); { const int maxk = convolution->kernel_w * convolution->kernel_h; const int num_input = convolution->weight_data_size / convolution->num_output / maxk; ncnn::Mat weight_data_r2 = convolution->weight_data.reshape(maxk, num_input, convolution->num_output); ncnn::Mat weight_data_int8; ncnn::Option opt_q = opt; opt_q.blob_allocator = convolution->weight_data.allocator; opt_q.use_packing_layout = false; ncnn::quantize_to_int8(weight_data_r2, weight_data_int8, weight_data_int8_scales, opt_q); if (weight_data_int8.empty()) return -100; convolution->weight_data = weight_data_int8.reshape(convolution->weight_data_size); } convolution->int8_scale_term = 2; convolution->weight_data_int8_scales = weight_data_int8_scales; convolution->bottom_blob_int8_scales = bottom_blob_int8_scales; } return 0; } int NetQuantize::quantize_convolutiondepthwise() { const int layer_count = static_cast(layers.size()); for (int i = 0; i < layer_count; i++) { // find convolution layer if (layers[i]->type != "ConvolutionDepthWise") continue; // find convolutiondepthwise layer std::map::iterator iter_data = blob_int8scale_table.find(layers[i]->name); if (iter_data == blob_int8scale_table.end()) continue; char key[256]; sprintf(key, "%s_param_0", layers[i]->name.c_str()); std::map::iterator iter = weight_int8scale_table.find(key); if (iter == weight_int8scale_table.end()) { fprintf(stderr, "this layer need to be quantized, but no scale param!\n"); return -1; } // Convolution - quantize weight from fp32 to int8 ncnn::ConvolutionDepthWise* convdw = (ncnn::ConvolutionDepthWise*)layers[i]; ncnn::Mat bottom_blob_int8_scales = iter_data->second; ncnn::Mat weight_data_int8_scales = iter->second; fprintf(stderr, "quantize_convolutiondepthwise %s\n", convdw->name.c_str()); { ncnn::Mat int8_weight_data(convdw->weight_data_size, (size_t)1u); if (int8_weight_data.empty()) return -100; const int weight_data_size_g = convdw->weight_data_size / convdw->group; for (int g = 0; g < convdw->group; g++) { ncnn::Option opt_q = opt; opt_q.blob_allocator = int8_weight_data.allocator; opt_q.use_packing_layout = false; const ncnn::Mat weight_data_g = convdw->weight_data.range(weight_data_size_g * g, weight_data_size_g); ncnn::Mat int8_weight_data_g = int8_weight_data.range(weight_data_size_g * g, weight_data_size_g); const ncnn::Mat weight_data_int8_scales_g = weight_data_int8_scales.range(g, 1); ncnn::quantize_to_int8(weight_data_g, int8_weight_data_g, weight_data_int8_scales_g, opt_q); } convdw->weight_data = int8_weight_data; } convdw->int8_scale_term = 1; convdw->weight_data_int8_scales = weight_data_int8_scales; convdw->bottom_blob_int8_scales = bottom_blob_int8_scales; } return 0; } int NetQuantize::quantize_innerproduct() { const int layer_count = static_cast(layers.size()); for (int i = 0; i < layer_count; i++) { // find convolution layer if (layers[i]->type != "InnerProduct") continue; // find InnerProduct layer std::map::iterator iter_data = blob_int8scale_table.find(layers[i]->name); if (iter_data == blob_int8scale_table.end()) continue; char key[256]; sprintf(key, "%s_param_0", layers[i]->name.c_str()); std::map::iterator iter = weight_int8scale_table.find(key); if (iter == weight_int8scale_table.end()) { fprintf(stderr, "this layer need to be quantized, but no scale param!\n"); return -1; } // InnerProduct - quantize weight from fp32 to int8 ncnn::InnerProduct* fc = (ncnn::InnerProduct*)layers[i]; ncnn::Mat bottom_blob_int8_scales = iter_data->second; ncnn::Mat weight_data_int8_scales = iter->second; fprintf(stderr, "quantize_innerproduct %s\n", fc->name.c_str()); { const int num_input = fc->weight_data_size / fc->num_output; ncnn::Mat weight_data_r2 = fc->weight_data.reshape(num_input, fc->num_output); ncnn::Mat weight_data_int8; ncnn::Option opt_q = opt; opt_q.use_packing_layout = false; ncnn::quantize_to_int8(weight_data_r2, weight_data_int8, weight_data_int8_scales, opt_q); if (weight_data_int8.empty()) return -100; fc->weight_data = weight_data_int8.reshape(fc->weight_data_size); } fc->int8_scale_term = 2; fc->weight_data_int8_scales = weight_data_int8_scales; fc->bottom_blob_int8_scales = bottom_blob_int8_scales; } return 0; } int NetQuantize::fuse_requantize() { const size_t layer_count = layers.size(); for (size_t i = 0; i < layer_count; i++) { if (layers[i]->type != "Convolution" && layers[i]->type != "ConvolutionDepthWise") continue; // Convolution/ConvolutionDepthWise - Convolution/ConvolutionDepthWise int top_blob_index = layers[i]->tops[0]; size_t j = i + 1; for (; j < layer_count; j++) { if (layers[j]->type != "Convolution" && layers[j]->type != "ConvolutionDepthWise") continue; if (layers[j]->bottoms.size() != 1) continue; if (layers[j]->bottoms[0] == top_blob_index) break; } if (j == layer_count) continue; // fuse requantize fprintf(stderr, "fuse_requantize %s %s\n", layers[i]->name.c_str(), layers[j]->name.c_str()); if (layers[i]->type == "Convolution" && layers[j]->type == "Convolution") { ncnn::Convolution* convolution1 = (ncnn::Convolution*)layers[i]; ncnn::Convolution* convolution2 = (ncnn::Convolution*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } if (layers[i]->type == "Convolution" && layers[j]->type == "ConvolutionDepthWise") { ncnn::Convolution* convolution1 = (ncnn::Convolution*)layers[i]; ncnn::ConvolutionDepthWise* convolution2 = (ncnn::ConvolutionDepthWise*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } if (layers[i]->type == "ConvolutionDepthWise" && layers[j]->type == "Convolution") { ncnn::ConvolutionDepthWise* convolution1 = (ncnn::ConvolutionDepthWise*)layers[i]; ncnn::Convolution* convolution2 = (ncnn::Convolution*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } if (layers[i]->type == "ConvolutionDepthWise" && layers[j]->type == "ConvolutionDepthWise") { ncnn::ConvolutionDepthWise* convolution1 = (ncnn::ConvolutionDepthWise*)layers[i]; ncnn::ConvolutionDepthWise* convolution2 = (ncnn::ConvolutionDepthWise*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } } for (size_t i = 0; i < layer_count; i++) { if (layers[i]->type != "Convolution" && layers[i]->type != "ConvolutionDepthWise") continue; // Convolution/ConvolutionDepthWise - Split - Convolution/ConvolutionDepthWise int top_blob_index = layers[i]->tops[0]; size_t j = i + 1; for (; j < layer_count; j++) { if (layers[j]->type != "Split") continue; if (layers[j]->bottoms.size() != 1) continue; if (layers[j]->bottoms[0] == top_blob_index) break; } if (j == layer_count) continue; ncnn::Split* split = (ncnn::Split*)layers[j]; bool all_conv = true; for (size_t p = 0; p < split->tops.size(); p++) { int split_top_blob_index = split->tops[p]; size_t k = j + 1; for (; k < layer_count; k++) { if (layers[k]->type != "Convolution" && layers[k]->type != "ConvolutionDepthWise") continue; if (layers[k]->bottoms.size() != 1) continue; if (layers[k]->bottoms[0] == split_top_blob_index) break; } if (k == layer_count) { all_conv = false; break; } if (layers[k]->type == "Convolution") { ncnn::Convolution* convolution = (ncnn::Convolution*)layers[k]; if (convolution->weight_data.elemsize != 1u) { all_conv = false; break; } } if (layers[k]->type == "ConvolutionDepthWise") { ncnn::ConvolutionDepthWise* convolution = (ncnn::ConvolutionDepthWise*)layers[k]; if (convolution->weight_data.elemsize != 1u) { all_conv = false; break; } } } if (!all_conv) continue; j = blobs[split->tops[0]].consumer; // fuse requantize fprintf(stderr, "fuse_requantize %s %s\n", layers[i]->name.c_str(), split->name.c_str()); if (layers[i]->type == "Convolution" && layers[j]->type == "Convolution") { ncnn::Convolution* convolution1 = (ncnn::Convolution*)layers[i]; ncnn::Convolution* convolution2 = (ncnn::Convolution*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } if (layers[i]->type == "Convolution" && layers[j]->type == "ConvolutionDepthWise") { ncnn::Convolution* convolution1 = (ncnn::Convolution*)layers[i]; ncnn::ConvolutionDepthWise* convolution2 = (ncnn::ConvolutionDepthWise*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } if (layers[i]->type == "ConvolutionDepthWise" && layers[j]->type == "Convolution") { ncnn::ConvolutionDepthWise* convolution1 = (ncnn::ConvolutionDepthWise*)layers[i]; ncnn::Convolution* convolution2 = (ncnn::Convolution*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } if (layers[i]->type == "ConvolutionDepthWise" && layers[j]->type == "ConvolutionDepthWise") { ncnn::ConvolutionDepthWise* convolution1 = (ncnn::ConvolutionDepthWise*)layers[i]; ncnn::ConvolutionDepthWise* convolution2 = (ncnn::ConvolutionDepthWise*)layers[j]; if (convolution1->weight_data.elemsize != 1u || convolution2->weight_data.elemsize != 1u) continue; convolution1->int8_scale_term += 100; convolution1->top_blob_int8_scales = convolution2->bottom_blob_int8_scales; } } return 0; } int main(int argc, char** argv) { if (argc != 6) { fprintf(stderr, "usage: %s [inparam] [inbin] [outparam] [outbin] [calibration table]\n", argv[0]); return -1; } const char* inparam = argv[1]; const char* inbin = argv[2]; const char* outparam = argv[3]; const char* outbin = argv[4]; const char* int8scale_table_path = argv[5]; NetQuantize quantizer; // parse the calibration scale table if (int8scale_table_path) { bool s2 = read_int8scale_table(int8scale_table_path, quantizer.blob_int8scale_table, quantizer.weight_int8scale_table); if (!s2) { fprintf(stderr, "read_int8scale_table failed\n"); return -1; } } quantizer.load_param(inparam); if (strcmp(inbin, "null") == 0) { DataReaderFromEmpty dr; quantizer.load_model(dr); quantizer.gen_random_weight = true; } else quantizer.load_model(inbin); quantizer.quantize_convolution(); quantizer.quantize_convolutiondepthwise(); quantizer.quantize_innerproduct(); quantizer.fuse_requantize(); quantizer.save(outparam, outbin); return 0; }