718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
174 lines
3.3 KiB
Markdown
174 lines
3.3 KiB
Markdown
## supported platform
|
|
|
|
* Y = known work
|
|
* ? = shall work, not confirmed
|
|
* / = not applied
|
|
|
|
| |windows|linux|android|mac|ios|
|
|
|---|---|---|---|---|---|
|
|
|intel|Y|Y|?|?|/|
|
|
|amd|Y|Y|/|?|/|
|
|
|nvidia|Y|Y|?|/|/|
|
|
|qcom|/|/|Y|/|/|
|
|
|apple|/|/|/|?|Y|
|
|
|arm|/|?|?|/|/|
|
|
|
|
## enable vulkan compute support
|
|
```
|
|
$ sudo dnf install vulkan-devel
|
|
$ cmake -DNCNN_VULKAN=ON ..
|
|
```
|
|
|
|
## enable vulkan compute inference
|
|
```cpp
|
|
ncnn::Net net;
|
|
net.opt.use_vulkan_compute = 1;
|
|
```
|
|
|
|
## proper allocator usage
|
|
```cpp
|
|
ncnn::VkAllocator* blob_vkallocator = vkdev.acquire_blob_allocator();
|
|
ncnn::VkAllocator* staging_vkallocator = vkdev.acquire_blob_allocator();
|
|
|
|
net.opt.blob_vkallocator = blob_vkallocator;
|
|
net.opt.workspace_vkallocator = blob_vkallocator;
|
|
net.opt.staging_vkallocator = staging_vkallocator;
|
|
|
|
// ....
|
|
|
|
// after inference
|
|
vkdev.reclaim_blob_allocator(blob_vkallocator);
|
|
vkdev.reclaim_staging_allocator(staging_vkallocator);
|
|
```
|
|
|
|
## select gpu device
|
|
```cpp
|
|
// get gpu count
|
|
int gpu_count = ncnn::get_gpu_count();
|
|
|
|
// set specified vulkan device before loading param and model
|
|
net.set_vulkan_device(0); // use device-0
|
|
net.set_vulkan_device(1); // use device-1
|
|
```
|
|
|
|
## zero-copy on unified memory device
|
|
```cpp
|
|
ncnn::VkMat blob_gpu;
|
|
ncnn::Mat mapped = blob_gpu.mapped();
|
|
|
|
// use mapped.data directly
|
|
```
|
|
|
|
## hybrid cpu/gpu inference
|
|
```cpp
|
|
ncnn::Extractor ex_cpu = net.create_extractor();
|
|
ncnn::Extractor ex_gpu = net.create_extractor();
|
|
ex_cpu.set_vulkan_compute(false);
|
|
ex_gpu.set_vulkan_compute(true);
|
|
|
|
#pragma omp parallel sections
|
|
{
|
|
#pragma omp section
|
|
{
|
|
ex_cpu.input();
|
|
ex_cpu.extract();
|
|
}
|
|
#pragma omp section
|
|
{
|
|
ex_gpu.input();
|
|
ex_gpu.extract();
|
|
}
|
|
}
|
|
```
|
|
|
|
## zero-copy gpu inference chaining
|
|
```cpp
|
|
ncnn::Extractor ex1 = net1.create_extractor();
|
|
ncnn::Extractor ex2 = net2.create_extractor();
|
|
|
|
ncnn::VkCompute cmd(&vkdev);
|
|
|
|
ncnn::VkMat conv1;
|
|
ncnn::VkMat conv2;
|
|
ncnn::VkMat conv3;
|
|
|
|
ex1.input("conv1", conv1);
|
|
ex1.extract("conv2", conv2, cmd);
|
|
|
|
ex2.input("conv2", conv2);
|
|
ex2.extract("conv3", conv3, cmd);
|
|
|
|
cmd.submit();
|
|
|
|
cmd.wait();
|
|
|
|
```
|
|
|
|
## batch inference
|
|
```cpp
|
|
int max_batch_size = vkdev->info.compute_queue_count;
|
|
|
|
ncnn::Mat inputs[1000];
|
|
ncnn::Mat outputs[1000];
|
|
|
|
#pragma omp parallel for num_threads(max_batch_size)
|
|
for (int i=0; i<1000; i++)
|
|
{
|
|
ncnn::Extractor ex = net1.create_extractor();
|
|
ex.input("data", inputs[i]);
|
|
ex.extract("prob", outputs[i]);
|
|
}
|
|
```
|
|
|
|
## control storage and arithmetic precision
|
|
|
|
disable all lower-precision optimizations, get full fp32 precision
|
|
|
|
```cpp
|
|
ncnn::Net net;
|
|
net.opt.use_fp16_packed = false;
|
|
net.opt.use_fp16_storage = false;
|
|
net.opt.use_fp16_arithmetic = false;
|
|
net.opt.use_int8_storage = false;
|
|
net.opt.use_int8_arithmetic = false;
|
|
```
|
|
|
|
## debugging tips
|
|
```cpp
|
|
#define ENABLE_VALIDATION_LAYER 1 // modify to 1 in gpu.cpp
|
|
```
|
|
|
|
## add vulkan compute support to layer
|
|
1. add vulkan shader in src/layer/shader/
|
|
|
|
2. upload model weight data in Layer::upload_model()
|
|
|
|
3. setup pipeline in Layer::create_pipeline()
|
|
|
|
4. destroy pipeline in Layer::destroy_pipeline()
|
|
|
|
5. record command in Layer::forward()
|
|
|
|
## add optimized shader path
|
|
1. add vulkan shader in src/layer/shader/ named XXX_abc.comp
|
|
|
|
2. create pipeline with "XXX_abc"
|
|
|
|
3. record command using XXX_abc pipeline
|
|
|
|
## low-level op api
|
|
1. create layer
|
|
|
|
2. load param and load model
|
|
|
|
3. upload model
|
|
|
|
4. create pipeline
|
|
|
|
5. new command
|
|
|
|
6. record
|
|
|
|
7. submit and wait
|
|
|