718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
545 lines
16 KiB
C++
545 lines
16 KiB
C++
// Tencent is pleased to support the open source community by making ncnn available.
|
|
//
|
|
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
|
|
//
|
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
|
// in compliance with the License. You may obtain a copy of the License at
|
|
//
|
|
// https://opensource.org/licenses/BSD-3-Clause
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#include "net.h"
|
|
|
|
#if defined(USE_NCNN_SIMPLEOCV)
|
|
#include "simpleocv.h"
|
|
#else
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#endif
|
|
#include <stdio.h>
|
|
#include <vector>
|
|
|
|
struct Object
|
|
{
|
|
cv::Rect_<float> rect;
|
|
int label;
|
|
float prob;
|
|
std::vector<float> maskdata;
|
|
cv::Mat mask;
|
|
};
|
|
|
|
static inline float intersection_area(const Object& a, const Object& b)
|
|
{
|
|
cv::Rect_<float> inter = a.rect & b.rect;
|
|
return inter.area();
|
|
}
|
|
|
|
static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
|
|
{
|
|
int i = left;
|
|
int j = right;
|
|
float p = objects[(left + right) / 2].prob;
|
|
|
|
while (i <= j)
|
|
{
|
|
while (objects[i].prob > p)
|
|
i++;
|
|
|
|
while (objects[j].prob < p)
|
|
j--;
|
|
|
|
if (i <= j)
|
|
{
|
|
// swap
|
|
std::swap(objects[i], objects[j]);
|
|
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel sections
|
|
{
|
|
#pragma omp section
|
|
{
|
|
if (left < j) qsort_descent_inplace(objects, left, j);
|
|
}
|
|
#pragma omp section
|
|
{
|
|
if (i < right) qsort_descent_inplace(objects, i, right);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qsort_descent_inplace(std::vector<Object>& objects)
|
|
{
|
|
if (objects.empty())
|
|
return;
|
|
|
|
qsort_descent_inplace(objects, 0, objects.size() - 1);
|
|
}
|
|
|
|
static void nms_sorted_bboxes(const std::vector<Object>& objects, std::vector<int>& picked, float nms_threshold)
|
|
{
|
|
picked.clear();
|
|
|
|
const int n = objects.size();
|
|
|
|
std::vector<float> areas(n);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
areas[i] = objects[i].rect.area();
|
|
}
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
const Object& a = objects[i];
|
|
|
|
int keep = 1;
|
|
for (int j = 0; j < (int)picked.size(); j++)
|
|
{
|
|
const Object& b = objects[picked[j]];
|
|
|
|
// intersection over union
|
|
float inter_area = intersection_area(a, b);
|
|
float union_area = areas[i] + areas[picked[j]] - inter_area;
|
|
// float IoU = inter_area / union_area
|
|
if (inter_area / union_area > nms_threshold)
|
|
keep = 0;
|
|
}
|
|
|
|
if (keep)
|
|
picked.push_back(i);
|
|
}
|
|
}
|
|
|
|
static int detect_yolact(const cv::Mat& bgr, std::vector<Object>& objects)
|
|
{
|
|
ncnn::Net yolact;
|
|
|
|
yolact.opt.use_vulkan_compute = true;
|
|
|
|
// original model converted from https://github.com/dbolya/yolact
|
|
// yolact_resnet50_54_800000.pth
|
|
// the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
|
|
yolact.load_param("yolact.param");
|
|
yolact.load_model("yolact.bin");
|
|
|
|
const int target_size = 550;
|
|
|
|
int img_w = bgr.cols;
|
|
int img_h = bgr.rows;
|
|
|
|
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, target_size, target_size);
|
|
|
|
const float mean_vals[3] = {123.68f, 116.78f, 103.94f};
|
|
const float norm_vals[3] = {1.0 / 58.40f, 1.0 / 57.12f, 1.0 / 57.38f};
|
|
in.substract_mean_normalize(mean_vals, norm_vals);
|
|
|
|
ncnn::Extractor ex = yolact.create_extractor();
|
|
|
|
ex.input("input.1", in);
|
|
|
|
ncnn::Mat maskmaps;
|
|
ncnn::Mat location;
|
|
ncnn::Mat mask;
|
|
ncnn::Mat confidence;
|
|
|
|
ex.extract("619", maskmaps); // 138x138 x 32
|
|
|
|
ex.extract("816", location); // 4 x 19248
|
|
ex.extract("818", mask); // maskdim 32 x 19248
|
|
ex.extract("820", confidence); // 81 x 19248
|
|
|
|
int num_class = confidence.w;
|
|
int num_priors = confidence.h;
|
|
|
|
// make priorbox
|
|
ncnn::Mat priorbox(4, num_priors);
|
|
{
|
|
const int conv_ws[5] = {69, 35, 18, 9, 5};
|
|
const int conv_hs[5] = {69, 35, 18, 9, 5};
|
|
|
|
const float aspect_ratios[3] = {1.f, 0.5f, 2.f};
|
|
const float scales[5] = {24.f, 48.f, 96.f, 192.f, 384.f};
|
|
|
|
float* pb = priorbox;
|
|
|
|
for (int p = 0; p < 5; p++)
|
|
{
|
|
int conv_w = conv_ws[p];
|
|
int conv_h = conv_hs[p];
|
|
|
|
float scale = scales[p];
|
|
|
|
for (int i = 0; i < conv_h; i++)
|
|
{
|
|
for (int j = 0; j < conv_w; j++)
|
|
{
|
|
// +0.5 because priors are in center-size notation
|
|
float cx = (j + 0.5f) / conv_w;
|
|
float cy = (i + 0.5f) / conv_h;
|
|
|
|
for (int k = 0; k < 3; k++)
|
|
{
|
|
float ar = aspect_ratios[k];
|
|
|
|
ar = sqrt(ar);
|
|
|
|
float w = scale * ar / 550;
|
|
float h = scale / ar / 550;
|
|
|
|
// This is for backward compatibility with a bug where I made everything square by accident
|
|
// cfg.backbone.use_square_anchors:
|
|
h = w;
|
|
|
|
pb[0] = cx;
|
|
pb[1] = cy;
|
|
pb[2] = w;
|
|
pb[3] = h;
|
|
|
|
pb += 4;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const float confidence_thresh = 0.05f;
|
|
const float nms_threshold = 0.5f;
|
|
const int keep_top_k = 200;
|
|
|
|
std::vector<std::vector<Object> > class_candidates;
|
|
class_candidates.resize(num_class);
|
|
|
|
for (int i = 0; i < num_priors; i++)
|
|
{
|
|
const float* conf = confidence.row(i);
|
|
const float* loc = location.row(i);
|
|
const float* pb = priorbox.row(i);
|
|
const float* maskdata = mask.row(i);
|
|
|
|
// find class id with highest score
|
|
// start from 1 to skip background
|
|
int label = 0;
|
|
float score = 0.f;
|
|
for (int j = 1; j < num_class; j++)
|
|
{
|
|
float class_score = conf[j];
|
|
if (class_score > score)
|
|
{
|
|
label = j;
|
|
score = class_score;
|
|
}
|
|
}
|
|
|
|
// ignore background or low score
|
|
if (label == 0 || score <= confidence_thresh)
|
|
continue;
|
|
|
|
// CENTER_SIZE
|
|
float var[4] = {0.1f, 0.1f, 0.2f, 0.2f};
|
|
|
|
float pb_cx = pb[0];
|
|
float pb_cy = pb[1];
|
|
float pb_w = pb[2];
|
|
float pb_h = pb[3];
|
|
|
|
float bbox_cx = var[0] * loc[0] * pb_w + pb_cx;
|
|
float bbox_cy = var[1] * loc[1] * pb_h + pb_cy;
|
|
float bbox_w = (float)(exp(var[2] * loc[2]) * pb_w);
|
|
float bbox_h = (float)(exp(var[3] * loc[3]) * pb_h);
|
|
|
|
float obj_x1 = bbox_cx - bbox_w * 0.5f;
|
|
float obj_y1 = bbox_cy - bbox_h * 0.5f;
|
|
float obj_x2 = bbox_cx + bbox_w * 0.5f;
|
|
float obj_y2 = bbox_cy + bbox_h * 0.5f;
|
|
|
|
// clip
|
|
obj_x1 = std::max(std::min(obj_x1 * bgr.cols, (float)(bgr.cols - 1)), 0.f);
|
|
obj_y1 = std::max(std::min(obj_y1 * bgr.rows, (float)(bgr.rows - 1)), 0.f);
|
|
obj_x2 = std::max(std::min(obj_x2 * bgr.cols, (float)(bgr.cols - 1)), 0.f);
|
|
obj_y2 = std::max(std::min(obj_y2 * bgr.rows, (float)(bgr.rows - 1)), 0.f);
|
|
|
|
// append object
|
|
Object obj;
|
|
obj.rect = cv::Rect_<float>(obj_x1, obj_y1, obj_x2 - obj_x1 + 1, obj_y2 - obj_y1 + 1);
|
|
obj.label = label;
|
|
obj.prob = score;
|
|
obj.maskdata = std::vector<float>(maskdata, maskdata + mask.w);
|
|
|
|
class_candidates[label].push_back(obj);
|
|
}
|
|
|
|
objects.clear();
|
|
for (int i = 0; i < (int)class_candidates.size(); i++)
|
|
{
|
|
std::vector<Object>& candidates = class_candidates[i];
|
|
|
|
qsort_descent_inplace(candidates);
|
|
|
|
std::vector<int> picked;
|
|
nms_sorted_bboxes(candidates, picked, nms_threshold);
|
|
|
|
for (int j = 0; j < (int)picked.size(); j++)
|
|
{
|
|
int z = picked[j];
|
|
objects.push_back(candidates[z]);
|
|
}
|
|
}
|
|
|
|
qsort_descent_inplace(objects);
|
|
|
|
// keep_top_k
|
|
if (keep_top_k < (int)objects.size())
|
|
{
|
|
objects.resize(keep_top_k);
|
|
}
|
|
|
|
// generate mask
|
|
for (int i = 0; i < (int)objects.size(); i++)
|
|
{
|
|
Object& obj = objects[i];
|
|
|
|
cv::Mat mask(maskmaps.h, maskmaps.w, CV_32FC1);
|
|
{
|
|
mask = cv::Scalar(0.f);
|
|
|
|
for (int p = 0; p < maskmaps.c; p++)
|
|
{
|
|
const float* maskmap = maskmaps.channel(p);
|
|
float coeff = obj.maskdata[p];
|
|
float* mp = (float*)mask.data;
|
|
|
|
// mask += m * coeff
|
|
for (int j = 0; j < maskmaps.w * maskmaps.h; j++)
|
|
{
|
|
mp[j] += maskmap[j] * coeff;
|
|
}
|
|
}
|
|
}
|
|
|
|
cv::Mat mask2;
|
|
cv::resize(mask, mask2, cv::Size(img_w, img_h));
|
|
|
|
// crop obj box and binarize
|
|
obj.mask = cv::Mat(img_h, img_w, CV_8UC1);
|
|
{
|
|
obj.mask = cv::Scalar(0);
|
|
|
|
for (int y = 0; y < img_h; y++)
|
|
{
|
|
if (y < obj.rect.y || y > obj.rect.y + obj.rect.height)
|
|
continue;
|
|
|
|
const float* mp2 = mask2.ptr<const float>(y);
|
|
uchar* bmp = obj.mask.ptr<uchar>(y);
|
|
|
|
for (int x = 0; x < img_w; x++)
|
|
{
|
|
if (x < obj.rect.x || x > obj.rect.x + obj.rect.width)
|
|
continue;
|
|
|
|
bmp[x] = mp2[x] > 0.5f ? 255 : 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
|
|
{
|
|
static const char* class_names[] = {"background",
|
|
"person", "bicycle", "car", "motorcycle", "airplane", "bus",
|
|
"train", "truck", "boat", "traffic light", "fire hydrant",
|
|
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
|
|
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
|
|
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
|
|
"skis", "snowboard", "sports ball", "kite", "baseball bat",
|
|
"baseball glove", "skateboard", "surfboard", "tennis racket",
|
|
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
|
|
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
|
|
"hot dog", "pizza", "donut", "cake", "chair", "couch",
|
|
"potted plant", "bed", "dining table", "toilet", "tv", "laptop",
|
|
"mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
|
|
"toaster", "sink", "refrigerator", "book", "clock", "vase",
|
|
"scissors", "teddy bear", "hair drier", "toothbrush"
|
|
};
|
|
|
|
static const unsigned char colors[81][3] = {
|
|
{56, 0, 255},
|
|
{226, 255, 0},
|
|
{0, 94, 255},
|
|
{0, 37, 255},
|
|
{0, 255, 94},
|
|
{255, 226, 0},
|
|
{0, 18, 255},
|
|
{255, 151, 0},
|
|
{170, 0, 255},
|
|
{0, 255, 56},
|
|
{255, 0, 75},
|
|
{0, 75, 255},
|
|
{0, 255, 169},
|
|
{255, 0, 207},
|
|
{75, 255, 0},
|
|
{207, 0, 255},
|
|
{37, 0, 255},
|
|
{0, 207, 255},
|
|
{94, 0, 255},
|
|
{0, 255, 113},
|
|
{255, 18, 0},
|
|
{255, 0, 56},
|
|
{18, 0, 255},
|
|
{0, 255, 226},
|
|
{170, 255, 0},
|
|
{255, 0, 245},
|
|
{151, 255, 0},
|
|
{132, 255, 0},
|
|
{75, 0, 255},
|
|
{151, 0, 255},
|
|
{0, 151, 255},
|
|
{132, 0, 255},
|
|
{0, 255, 245},
|
|
{255, 132, 0},
|
|
{226, 0, 255},
|
|
{255, 37, 0},
|
|
{207, 255, 0},
|
|
{0, 255, 207},
|
|
{94, 255, 0},
|
|
{0, 226, 255},
|
|
{56, 255, 0},
|
|
{255, 94, 0},
|
|
{255, 113, 0},
|
|
{0, 132, 255},
|
|
{255, 0, 132},
|
|
{255, 170, 0},
|
|
{255, 0, 188},
|
|
{113, 255, 0},
|
|
{245, 0, 255},
|
|
{113, 0, 255},
|
|
{255, 188, 0},
|
|
{0, 113, 255},
|
|
{255, 0, 0},
|
|
{0, 56, 255},
|
|
{255, 0, 113},
|
|
{0, 255, 188},
|
|
{255, 0, 94},
|
|
{255, 0, 18},
|
|
{18, 255, 0},
|
|
{0, 255, 132},
|
|
{0, 188, 255},
|
|
{0, 245, 255},
|
|
{0, 169, 255},
|
|
{37, 255, 0},
|
|
{255, 0, 151},
|
|
{188, 0, 255},
|
|
{0, 255, 37},
|
|
{0, 255, 0},
|
|
{255, 0, 170},
|
|
{255, 0, 37},
|
|
{255, 75, 0},
|
|
{0, 0, 255},
|
|
{255, 207, 0},
|
|
{255, 0, 226},
|
|
{255, 245, 0},
|
|
{188, 255, 0},
|
|
{0, 255, 18},
|
|
{0, 255, 75},
|
|
{0, 255, 151},
|
|
{255, 56, 0},
|
|
{245, 255, 0}
|
|
};
|
|
|
|
cv::Mat image = bgr.clone();
|
|
|
|
int color_index = 0;
|
|
|
|
for (size_t i = 0; i < objects.size(); i++)
|
|
{
|
|
const Object& obj = objects[i];
|
|
|
|
if (obj.prob < 0.15)
|
|
continue;
|
|
|
|
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
|
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
|
|
|
|
const unsigned char* color = colors[color_index % 81];
|
|
color_index++;
|
|
|
|
cv::rectangle(image, obj.rect, cv::Scalar(color[0], color[1], color[2]));
|
|
|
|
char text[256];
|
|
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
|
|
|
|
int baseLine = 0;
|
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
|
|
|
int x = obj.rect.x;
|
|
int y = obj.rect.y - label_size.height - baseLine;
|
|
if (y < 0)
|
|
y = 0;
|
|
if (x + label_size.width > image.cols)
|
|
x = image.cols - label_size.width;
|
|
|
|
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
|
|
cv::Scalar(255, 255, 255), -1);
|
|
|
|
cv::putText(image, text, cv::Point(x, y + label_size.height),
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
|
|
|
|
// draw mask
|
|
for (int y = 0; y < image.rows; y++)
|
|
{
|
|
const uchar* mp = obj.mask.ptr(y);
|
|
uchar* p = image.ptr(y);
|
|
for (int x = 0; x < image.cols; x++)
|
|
{
|
|
if (mp[x] == 255)
|
|
{
|
|
p[0] = cv::saturate_cast<uchar>(p[0] * 0.5 + color[0] * 0.5);
|
|
p[1] = cv::saturate_cast<uchar>(p[1] * 0.5 + color[1] * 0.5);
|
|
p[2] = cv::saturate_cast<uchar>(p[2] * 0.5 + color[2] * 0.5);
|
|
}
|
|
p += 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
cv::imwrite("result.png", image);
|
|
cv::imshow("image", image);
|
|
cv::waitKey(0);
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
if (argc != 2)
|
|
{
|
|
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
|
|
return -1;
|
|
}
|
|
|
|
const char* imagepath = argv[1];
|
|
|
|
cv::Mat m = cv::imread(imagepath, 1);
|
|
if (m.empty())
|
|
{
|
|
fprintf(stderr, "cv::imread %s failed\n", imagepath);
|
|
return -1;
|
|
}
|
|
|
|
std::vector<Object> objects;
|
|
detect_yolact(m, objects);
|
|
|
|
draw_objects(m, objects);
|
|
|
|
return 0;
|
|
}
|