718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
423 lines
13 KiB
C++
423 lines
13 KiB
C++
// Tencent is pleased to support the open source community by making ncnn available.
|
|
//
|
|
// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
|
|
//
|
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
|
// in compliance with the License. You may obtain a copy of the License at
|
|
//
|
|
// https://opensource.org/licenses/BSD-3-Clause
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#include "layer.h"
|
|
#include "net.h"
|
|
|
|
#if defined(USE_NCNN_SIMPLEOCV)
|
|
#include "simpleocv.h"
|
|
#else
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#endif
|
|
#include <float.h>
|
|
#include <stdio.h>
|
|
#include <vector>
|
|
|
|
struct Object
|
|
{
|
|
cv::Rect_<float> rect;
|
|
int label;
|
|
float prob;
|
|
};
|
|
|
|
static inline float intersection_area(const Object& a, const Object& b)
|
|
{
|
|
cv::Rect_<float> inter = a.rect & b.rect;
|
|
return inter.area();
|
|
}
|
|
|
|
static void qsort_descent_inplace(std::vector<Object>& faceobjects, int left, int right)
|
|
{
|
|
int i = left;
|
|
int j = right;
|
|
float p = faceobjects[(left + right) / 2].prob;
|
|
|
|
while (i <= j)
|
|
{
|
|
while (faceobjects[i].prob > p)
|
|
i++;
|
|
|
|
while (faceobjects[j].prob < p)
|
|
j--;
|
|
|
|
if (i <= j)
|
|
{
|
|
// swap
|
|
std::swap(faceobjects[i], faceobjects[j]);
|
|
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel sections
|
|
{
|
|
#pragma omp section
|
|
{
|
|
if (left < j) qsort_descent_inplace(faceobjects, left, j);
|
|
}
|
|
#pragma omp section
|
|
{
|
|
if (i < right) qsort_descent_inplace(faceobjects, i, right);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qsort_descent_inplace(std::vector<Object>& faceobjects)
|
|
{
|
|
if (faceobjects.empty())
|
|
return;
|
|
|
|
qsort_descent_inplace(faceobjects, 0, faceobjects.size() - 1);
|
|
}
|
|
|
|
static void nms_sorted_bboxes(const std::vector<Object>& faceobjects, std::vector<int>& picked, float nms_threshold)
|
|
{
|
|
picked.clear();
|
|
|
|
const int n = faceobjects.size();
|
|
|
|
std::vector<float> areas(n);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
areas[i] = faceobjects[i].rect.area();
|
|
}
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
const Object& a = faceobjects[i];
|
|
|
|
int keep = 1;
|
|
for (int j = 0; j < (int)picked.size(); j++)
|
|
{
|
|
const Object& b = faceobjects[picked[j]];
|
|
|
|
// intersection over union
|
|
float inter_area = intersection_area(a, b);
|
|
float union_area = areas[i] + areas[picked[j]] - inter_area;
|
|
// float IoU = inter_area / union_area
|
|
if (inter_area / union_area > nms_threshold)
|
|
keep = 0;
|
|
}
|
|
|
|
if (keep)
|
|
picked.push_back(i);
|
|
}
|
|
}
|
|
|
|
static inline float sigmoid(float x)
|
|
{
|
|
return static_cast<float>(1.f / (1.f + exp(-x)));
|
|
}
|
|
|
|
static void generate_proposals(const ncnn::Mat& anchors, int stride, const ncnn::Mat& in_pad, const ncnn::Mat& feat_blob, float prob_threshold, std::vector<Object>& objects)
|
|
{
|
|
const int num_grid_x = feat_blob.w;
|
|
const int num_grid_y = feat_blob.h;
|
|
|
|
const int num_anchors = anchors.w / 2;
|
|
|
|
const int num_class = 80;
|
|
|
|
for (int q = 0; q < num_anchors; q++)
|
|
{
|
|
const float anchor_w = anchors[q * 2];
|
|
const float anchor_h = anchors[q * 2 + 1];
|
|
|
|
for (int i = 0; i < num_grid_y; i++)
|
|
{
|
|
for (int j = 0; j < num_grid_x; j++)
|
|
{
|
|
// find class index with max class score
|
|
int class_index = 0;
|
|
float class_score = -FLT_MAX;
|
|
for (int k = 0; k < num_class; k++)
|
|
{
|
|
float score = feat_blob.channel(q * 85 + 5 + k).row(i)[j];
|
|
if (score > class_score)
|
|
{
|
|
class_index = k;
|
|
class_score = score;
|
|
}
|
|
}
|
|
|
|
float box_score = feat_blob.channel(q * 85 + 4).row(i)[j];
|
|
|
|
float confidence = sigmoid(box_score) * sigmoid(class_score);
|
|
|
|
if (confidence >= prob_threshold)
|
|
{
|
|
// yolov5/models/yolo.py Detect forward
|
|
// y = x[i].sigmoid()
|
|
// y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
|
|
// y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
|
|
|
float dx = sigmoid(feat_blob.channel(q * 85 + 0).row(i)[j]);
|
|
float dy = sigmoid(feat_blob.channel(q * 85 + 1).row(i)[j]);
|
|
float dw = sigmoid(feat_blob.channel(q * 85 + 2).row(i)[j]);
|
|
float dh = sigmoid(feat_blob.channel(q * 85 + 3).row(i)[j]);
|
|
|
|
float pb_cx = (dx * 2.f - 0.5f + j) * stride;
|
|
float pb_cy = (dy * 2.f - 0.5f + i) * stride;
|
|
|
|
float pb_w = pow(dw * 2.f, 2) * anchor_w;
|
|
float pb_h = pow(dh * 2.f, 2) * anchor_h;
|
|
|
|
float x0 = pb_cx - pb_w * 0.5f;
|
|
float y0 = pb_cy - pb_h * 0.5f;
|
|
float x1 = pb_cx + pb_w * 0.5f;
|
|
float y1 = pb_cy + pb_h * 0.5f;
|
|
|
|
Object obj;
|
|
obj.rect.x = x0;
|
|
obj.rect.y = y0;
|
|
obj.rect.width = x1 - x0;
|
|
obj.rect.height = y1 - y0;
|
|
obj.label = class_index;
|
|
obj.prob = confidence;
|
|
|
|
objects.push_back(obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int detect_yolov5(const cv::Mat& bgr, std::vector<Object>& objects)
|
|
{
|
|
ncnn::Net yolov5;
|
|
|
|
yolov5.opt.use_vulkan_compute = true;
|
|
// yolov5.opt.use_bf16_storage = true;
|
|
|
|
// original pretrained model from https://github.com/ultralytics/yolov5
|
|
// the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
|
|
yolov5.load_param("yolov5s.ncnn.param");
|
|
yolov5.load_model("yolov5s.ncnn.bin");
|
|
|
|
const int target_size = 640;
|
|
const float prob_threshold = 0.25f;
|
|
const float nms_threshold = 0.45f;
|
|
|
|
int img_w = bgr.cols;
|
|
int img_h = bgr.rows;
|
|
|
|
// yolov5/models/common.py DetectMultiBackend
|
|
const int max_stride = 64;
|
|
|
|
// letterbox pad to multiple of max_stride
|
|
int w = img_w;
|
|
int h = img_h;
|
|
float scale = 1.f;
|
|
if (w > h)
|
|
{
|
|
scale = (float)target_size / w;
|
|
w = target_size;
|
|
h = h * scale;
|
|
}
|
|
else
|
|
{
|
|
scale = (float)target_size / h;
|
|
h = target_size;
|
|
w = w * scale;
|
|
}
|
|
|
|
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, img_w, img_h, w, h);
|
|
|
|
// pad to target_size rectangle
|
|
// yolov5/utils/datasets.py letterbox
|
|
int wpad = (w + max_stride - 1) / max_stride * max_stride - w;
|
|
int hpad = (h + max_stride - 1) / max_stride * max_stride - h;
|
|
ncnn::Mat in_pad;
|
|
ncnn::copy_make_border(in, in_pad, hpad / 2, hpad - hpad / 2, wpad / 2, wpad - wpad / 2, ncnn::BORDER_CONSTANT, 114.f);
|
|
|
|
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
|
|
in_pad.substract_mean_normalize(0, norm_vals);
|
|
|
|
ncnn::Extractor ex = yolov5.create_extractor();
|
|
|
|
ex.input("in0", in_pad);
|
|
|
|
std::vector<Object> proposals;
|
|
|
|
// anchor setting from yolov5/models/yolov5s.yaml
|
|
|
|
// stride 8
|
|
{
|
|
ncnn::Mat out;
|
|
ex.extract("out0", out);
|
|
|
|
ncnn::Mat anchors(6);
|
|
anchors[0] = 10.f;
|
|
anchors[1] = 13.f;
|
|
anchors[2] = 16.f;
|
|
anchors[3] = 30.f;
|
|
anchors[4] = 33.f;
|
|
anchors[5] = 23.f;
|
|
|
|
std::vector<Object> objects8;
|
|
generate_proposals(anchors, 8, in_pad, out, prob_threshold, objects8);
|
|
|
|
proposals.insert(proposals.end(), objects8.begin(), objects8.end());
|
|
}
|
|
|
|
// stride 16
|
|
{
|
|
ncnn::Mat out;
|
|
ex.extract("out1", out);
|
|
|
|
ncnn::Mat anchors(6);
|
|
anchors[0] = 30.f;
|
|
anchors[1] = 61.f;
|
|
anchors[2] = 62.f;
|
|
anchors[3] = 45.f;
|
|
anchors[4] = 59.f;
|
|
anchors[5] = 119.f;
|
|
|
|
std::vector<Object> objects16;
|
|
generate_proposals(anchors, 16, in_pad, out, prob_threshold, objects16);
|
|
|
|
proposals.insert(proposals.end(), objects16.begin(), objects16.end());
|
|
}
|
|
|
|
// stride 32
|
|
{
|
|
ncnn::Mat out;
|
|
ex.extract("out2", out);
|
|
|
|
ncnn::Mat anchors(6);
|
|
anchors[0] = 116.f;
|
|
anchors[1] = 90.f;
|
|
anchors[2] = 156.f;
|
|
anchors[3] = 198.f;
|
|
anchors[4] = 373.f;
|
|
anchors[5] = 326.f;
|
|
|
|
std::vector<Object> objects32;
|
|
generate_proposals(anchors, 32, in_pad, out, prob_threshold, objects32);
|
|
|
|
proposals.insert(proposals.end(), objects32.begin(), objects32.end());
|
|
}
|
|
|
|
// sort all proposals by score from highest to lowest
|
|
qsort_descent_inplace(proposals);
|
|
|
|
// apply nms with nms_threshold
|
|
std::vector<int> picked;
|
|
nms_sorted_bboxes(proposals, picked, nms_threshold);
|
|
|
|
int count = picked.size();
|
|
|
|
objects.resize(count);
|
|
for (int i = 0; i < count; i++)
|
|
{
|
|
objects[i] = proposals[picked[i]];
|
|
|
|
// adjust offset to original unpadded
|
|
float x0 = (objects[i].rect.x - (wpad / 2)) / scale;
|
|
float y0 = (objects[i].rect.y - (hpad / 2)) / scale;
|
|
float x1 = (objects[i].rect.x + objects[i].rect.width - (wpad / 2)) / scale;
|
|
float y1 = (objects[i].rect.y + objects[i].rect.height - (hpad / 2)) / scale;
|
|
|
|
// clip
|
|
x0 = std::max(std::min(x0, (float)(img_w - 1)), 0.f);
|
|
y0 = std::max(std::min(y0, (float)(img_h - 1)), 0.f);
|
|
x1 = std::max(std::min(x1, (float)(img_w - 1)), 0.f);
|
|
y1 = std::max(std::min(y1, (float)(img_h - 1)), 0.f);
|
|
|
|
objects[i].rect.x = x0;
|
|
objects[i].rect.y = y0;
|
|
objects[i].rect.width = x1 - x0;
|
|
objects[i].rect.height = y1 - y0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
|
|
{
|
|
static const char* class_names[] = {
|
|
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
|
|
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
|
|
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
|
|
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard",
|
|
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
|
|
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
|
|
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
|
|
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
|
|
"hair drier", "toothbrush"
|
|
};
|
|
|
|
cv::Mat image = bgr.clone();
|
|
|
|
for (size_t i = 0; i < objects.size(); i++)
|
|
{
|
|
const Object& obj = objects[i];
|
|
|
|
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
|
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
|
|
|
|
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
|
|
|
|
char text[256];
|
|
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
|
|
|
|
int baseLine = 0;
|
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
|
|
|
int x = obj.rect.x;
|
|
int y = obj.rect.y - label_size.height - baseLine;
|
|
if (y < 0)
|
|
y = 0;
|
|
if (x + label_size.width > image.cols)
|
|
x = image.cols - label_size.width;
|
|
|
|
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
|
|
cv::Scalar(255, 255, 255), -1);
|
|
|
|
cv::putText(image, text, cv::Point(x, y + label_size.height),
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
|
|
}
|
|
|
|
cv::imshow("image", image);
|
|
cv::waitKey(0);
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
if (argc != 2)
|
|
{
|
|
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
|
|
return -1;
|
|
}
|
|
|
|
const char* imagepath = argv[1];
|
|
|
|
cv::Mat m = cv::imread(imagepath, 1);
|
|
if (m.empty())
|
|
{
|
|
fprintf(stderr, "cv::imread %s failed\n", imagepath);
|
|
return -1;
|
|
}
|
|
|
|
std::vector<Object> objects;
|
|
detect_yolov5(m, objects);
|
|
|
|
draw_objects(m, objects);
|
|
|
|
return 0;
|
|
}
|