deepin-ocr/3rdparty/ncnn/python/tests/test_net.py
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

145 lines
3.9 KiB
Python

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import numpy as np
import pytest
import ncnn
def test_net():
dr = ncnn.DataReaderFromEmpty()
with ncnn.Net() as net:
ret = net.load_param("tests/test.param")
net.load_model(dr)
assert ret == 0 and len(net.blobs()) == 3 and len(net.layers()) == 3
input_names = net.input_names()
output_names = net.output_names()
assert len(input_names) > 0 and len(output_names) > 0
in_mat = ncnn.Mat((227, 227, 3))
with net.create_extractor() as ex:
ex.input("data", in_mat)
ret, out_mat = ex.extract("output")
assert ret == 0 and out_mat.dims == 1 and out_mat.w == 1
net.clear()
assert len(net.blobs()) == 0 and len(net.layers()) == 0
def test_net_vulkan():
if not hasattr(ncnn, "get_gpu_count"):
return
dr = ncnn.DataReaderFromEmpty()
net = ncnn.Net()
net.opt.use_vulkan_compute = True
ret = net.load_param("tests/test.param")
net.load_model(dr)
assert ret == 0 and len(net.blobs()) == 3 and len(net.layers()) == 3
in_mat = ncnn.Mat((227, 227, 3))
ex = net.create_extractor()
ex.input("data", in_mat)
ret, out_mat = ex.extract("output")
assert ret == 0 and out_mat.dims == 1 and out_mat.w == 1
ex.clear()
net.clear()
assert len(net.blobs()) == 0 and len(net.layers()) == 0
def test_custom_layer():
class CustomLayer(ncnn.Layer):
customLayers = []
def __init__(self):
ncnn.Layer.__init__(self)
self.one_blob_only = True
self.customLayers.append(self)
def forward(self, bottom_blob, top_blob, opt):
x = np.array(bottom_blob)
x += 1
top_blob.clone_from(ncnn.Mat(x), opt.blob_allocator)
if top_blob.empty():
return -100
return 0
def CustomLayer_layer_creator():
return CustomLayer()
def CustomLayer_layer_destroyer(layer):
for i in range(len(CustomLayer.customLayers)):
if CustomLayer.customLayers[i] == layer:
del CustomLayer.customLayers[i]
break
dr = ncnn.DataReaderFromEmpty()
net = ncnn.Net()
net.register_custom_layer(
"CustomLayer", CustomLayer_layer_creator, CustomLayer_layer_destroyer
)
ret = net.load_param("tests/custom_layer.param")
net.load_model(dr)
assert ret == 0 and len(net.blobs()) == 2 and len(net.layers()) == 2
in_mat = ncnn.Mat(1)
in_mat.fill(1.0)
ex = net.create_extractor()
ex.input("data", in_mat)
ret, out_mat = ex.extract("output")
assert ret == 0 and out_mat.dims == 1 and out_mat.w == 1 and out_mat[0] == 2.0
ex.clear()
net.clear()
assert len(net.blobs()) == 0 and len(net.layers()) == 0
def test_vulkan_device_index():
if not hasattr(ncnn, "get_gpu_count"):
return
net = ncnn.Net()
assert net.vulkan_device() is None
net.set_vulkan_device(0)
assert net.vulkan_device() is not None
def test_vulkan_device_vkdev():
if not hasattr(ncnn, "get_gpu_count"):
return
net = ncnn.Net()
assert net.vulkan_device() is None
vkdev = ncnn.get_gpu_device(0)
net.set_vulkan_device(vkdev)
assert net.vulkan_device() is not None