deepin-ocr/3rdparty/ncnn/tests/test_multiheadattention.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

104 lines
3.0 KiB
C++

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "layer/multiheadattention.h"
#include "testutil.h"
static int test_multiheadattention(const ncnn::Mat& a, int num_heads)
{
int embed_dim = a.w;
ncnn::ParamDict pd;
pd.set(0, embed_dim);
pd.set(1, num_heads);
pd.set(2, embed_dim * embed_dim);
std::vector<ncnn::Mat> weights(8);
weights[0] = RandomMat(embed_dim * embed_dim);
weights[1] = RandomMat(embed_dim);
weights[2] = RandomMat(embed_dim * embed_dim);
weights[3] = RandomMat(embed_dim);
weights[4] = RandomMat(embed_dim * embed_dim);
weights[5] = RandomMat(embed_dim);
weights[6] = RandomMat(embed_dim * embed_dim);
weights[7] = RandomMat(embed_dim);
std::vector<ncnn::Mat> as(3);
as[0] = a;
as[1] = a;
as[2] = a;
int ret = test_layer<ncnn::MultiHeadAttention>("MultiHeadAttention", pd, weights, as);
if (ret != 0)
{
fprintf(stderr, "test_multiheadattention failed a=(%d %d)\n", a.w, a.h);
}
return ret;
}
static int test_multiheadattention_sameqkv(const ncnn::Mat& a, int num_heads)
{
int embed_dim = a.w;
ncnn::ParamDict pd;
pd.set(0, embed_dim);
pd.set(1, num_heads);
pd.set(2, embed_dim * embed_dim);
std::vector<ncnn::Mat> weights(8);
weights[0] = RandomMat(embed_dim * embed_dim);
weights[1] = RandomMat(embed_dim);
weights[2] = RandomMat(embed_dim * embed_dim);
weights[3] = RandomMat(embed_dim);
weights[4] = RandomMat(embed_dim * embed_dim);
weights[5] = RandomMat(embed_dim);
weights[6] = RandomMat(embed_dim * embed_dim);
weights[7] = RandomMat(embed_dim);
std::vector<ncnn::Mat> as(1);
as[0] = a;
int ret = test_layer<ncnn::MultiHeadAttention>("MultiHeadAttention", pd, weights, as);
if (ret != 0)
{
fprintf(stderr, "test_multiheadattention failed a=(%d %d)\n", a.w, a.h);
}
return ret;
}
static int test_multiheadattention_0()
{
return 0
|| test_multiheadattention(RandomMat(64, 128), 4)
|| test_multiheadattention(RandomMat(64, 127), 16);
}
static int test_multiheadattention_1()
{
return 0
|| test_multiheadattention_sameqkv(RandomMat(64, 128), 8)
|| test_multiheadattention_sameqkv(RandomMat(64, 127), 32);
}
int main()
{
SRAND(7767517);
return 0
|| test_multiheadattention_0()
|| test_multiheadattention_1();
}