deepin-ocr/3rdparty/opencv-4.5.4/samples/tapi/ufacedetect.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

254 lines
8.7 KiB
C++

#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/core/ocl.hpp"
#include <iostream>
using namespace std;
using namespace cv;
static void help()
{
cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
"It's most known use is for faces.\n"
"Usage:\n"
"./ufacedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
" [--try-flip]\n"
" [filename|camera_index]\n\n"
"see facedetect.cmd for one call:\n"
"./ufacedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
"During execution:\n\tHit any key to quit.\n"
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}
void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip );
int main( int argc, const char** argv )
{
VideoCapture capture;
UMat frame, image;
Mat canvas;
string inputName;
bool tryflip;
CascadeClassifier cascade, nestedCascade;
double scale;
cv::CommandLineParser parser(argc, argv,
"{cascade|data/haarcascades/haarcascade_frontalface_alt.xml|}"
"{nested-cascade|data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"
"{help h ||}{scale|1|}{try-flip||}{@filename||}"
);
if (parser.has("help"))
{
help();
return 0;
}
string cascadeName = samples::findFile(parser.get<string>("cascade"));
string nestedCascadeName = samples::findFileOrKeep(parser.get<string>("nested-cascade"));
scale = parser.get<double>("scale");
tryflip = parser.has("try-flip");
inputName = parser.get<string>("@filename");
if ( !parser.check())
{
parser.printErrors();
help();
return -1;
}
if ( !nestedCascade.load( nestedCascadeName ) )
cerr << "WARNING: Could not load classifier cascade for nested objects: " << nestedCascadeName << endl;
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load classifier cascade: " << cascadeName << endl;
help();
return -1;
}
cout << "old cascade: " << (cascade.isOldFormatCascade() ? "TRUE" : "FALSE") << endl;
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
{
int camera = inputName.empty() ? 0 : inputName[0] - '0';
if(!capture.open(camera))
cout << "Capture from camera #" << camera << " didn't work" << endl;
}
else
{
inputName = samples::findFileOrKeep(inputName);
imread(inputName, IMREAD_COLOR).copyTo(image);
if( image.empty() )
{
if(!capture.open( inputName ))
cout << "Could not read " << inputName << endl;
}
}
if( capture.isOpened() )
{
cout << "Video capturing has been started ..." << endl;
for(;;)
{
capture >> frame;
if( frame.empty() )
break;
detectAndDraw( frame, canvas, cascade, nestedCascade, scale, tryflip );
char c = (char)waitKey(10);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
}
else
{
cout << "Detecting face(s) in " << inputName << endl;
if( !image.empty() )
{
detectAndDraw( image, canvas, cascade, nestedCascade, scale, tryflip );
waitKey(0);
}
else if( !inputName.empty() )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( inputName.c_str(), "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf);
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
imread(samples::findFile(buf), IMREAD_COLOR).copyTo(image);
if( !image.empty() )
{
detectAndDraw( image, canvas, cascade, nestedCascade, scale, tryflip );
char c = (char)waitKey(0);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
else
{
cerr << "Aw snap, couldn't read image " << buf << endl;
}
}
fclose(f);
}
}
}
return 0;
}
void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip )
{
double t = 0;
vector<Rect> faces, faces2;
const static Scalar colors[] =
{
Scalar(255,0,0),
Scalar(255,128,0),
Scalar(255,255,0),
Scalar(0,255,0),
Scalar(0,128,255),
Scalar(0,255,255),
Scalar(0,0,255),
Scalar(255,0,255)
};
static UMat gray, smallImg;
t = (double)getTickCount();
cvtColor( img, gray, COLOR_BGR2GRAY );
double fx = 1 / scale;
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR_EXACT );
equalizeHist( smallImg, smallImg );
cascade.detectMultiScale( smallImg, faces,
1.1, 3, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
if( tryflip )
{
flip(smallImg, smallImg, 1);
cascade.detectMultiScale( smallImg, faces2,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); ++r )
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)getTickCount() - t;
img.copyTo(canvas);
double fps = getTickFrequency()/t;
static double avgfps = 0;
static int nframes = 0;
nframes++;
double alpha = nframes > 50 ? 0.01 : 1./nframes;
avgfps = avgfps*(1-alpha) + fps*alpha;
putText(canvas, cv::format("OpenCL: %s, fps: %.1f", ocl::useOpenCL() ? "ON" : "OFF", avgfps), Point(50, 30),
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(0,255,0), 2);
for ( size_t i = 0; i < faces.size(); i++ )
{
Rect r = faces[i];
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
double aspect_ratio = (double)r.width/r.height;
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
{
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
circle( canvas, center, radius, color, 3, 8, 0 );
}
else
rectangle( canvas, Point(cvRound(r.x*scale), cvRound(r.y*scale)),
Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
color, 3, 8, 0);
if( nestedCascade.empty() )
continue;
UMat smallImgROI = smallImg(r);
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for ( size_t j = 0; j < nestedObjects.size(); j++ )
{
Rect nr = nestedObjects[j];
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
radius = cvRound((nr.width + nr.height)*0.25*scale);
circle( canvas, center, radius, color, 3, 8, 0 );
}
}
imshow( "result", canvas );
}