718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
358 lines
9.8 KiB
C++
358 lines
9.8 KiB
C++
// Tencent is pleased to support the open source community by making ncnn available.
|
|
//
|
|
// Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
|
|
//
|
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
|
// in compliance with the License. You may obtain a copy of the License at
|
|
//
|
|
// https://opensource.org/licenses/BSD-3-Clause
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#include "net.h"
|
|
|
|
#include <math.h>
|
|
#if defined(USE_NCNN_SIMPLEOCV)
|
|
#include "simpleocv.h"
|
|
#else
|
|
#include <opencv2/core/core.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#endif
|
|
#include <stdio.h>
|
|
|
|
struct Object
|
|
{
|
|
cv::Rect_<float> rect;
|
|
int label;
|
|
float prob;
|
|
};
|
|
|
|
static inline float intersection_area(const Object& a, const Object& b)
|
|
{
|
|
cv::Rect_<float> inter = a.rect & b.rect;
|
|
return inter.area();
|
|
}
|
|
|
|
static void qsort_descent_inplace(std::vector<Object>& objects, int left, int right)
|
|
{
|
|
int i = left;
|
|
int j = right;
|
|
float p = objects[(left + right) / 2].prob;
|
|
|
|
while (i <= j)
|
|
{
|
|
while (objects[i].prob > p)
|
|
i++;
|
|
|
|
while (objects[j].prob < p)
|
|
j--;
|
|
|
|
if (i <= j)
|
|
{
|
|
// swap
|
|
std::swap(objects[i], objects[j]);
|
|
|
|
i++;
|
|
j--;
|
|
}
|
|
}
|
|
|
|
#pragma omp parallel sections
|
|
{
|
|
#pragma omp section
|
|
{
|
|
if (left < j) qsort_descent_inplace(objects, left, j);
|
|
}
|
|
#pragma omp section
|
|
{
|
|
if (i < right) qsort_descent_inplace(objects, i, right);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qsort_descent_inplace(std::vector<Object>& objects)
|
|
{
|
|
if (objects.empty())
|
|
return;
|
|
|
|
qsort_descent_inplace(objects, 0, objects.size() - 1);
|
|
}
|
|
|
|
static void nms_sorted_bboxes(const std::vector<Object>& objects, std::vector<int>& picked, float nms_threshold)
|
|
{
|
|
picked.clear();
|
|
|
|
const int n = objects.size();
|
|
|
|
std::vector<float> areas(n);
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
areas[i] = objects[i].rect.area();
|
|
}
|
|
|
|
for (int i = 0; i < n; i++)
|
|
{
|
|
const Object& a = objects[i];
|
|
|
|
int keep = 1;
|
|
for (int j = 0; j < (int)picked.size(); j++)
|
|
{
|
|
const Object& b = objects[picked[j]];
|
|
|
|
// intersection over union
|
|
float inter_area = intersection_area(a, b);
|
|
float union_area = areas[i] + areas[picked[j]] - inter_area;
|
|
// float IoU = inter_area / union_area
|
|
if (inter_area / union_area > nms_threshold)
|
|
keep = 0;
|
|
}
|
|
|
|
if (keep)
|
|
picked.push_back(i);
|
|
}
|
|
}
|
|
|
|
static int detect_rfcn(const cv::Mat& bgr, std::vector<Object>& objects)
|
|
{
|
|
ncnn::Net rfcn;
|
|
|
|
rfcn.opt.use_vulkan_compute = true;
|
|
|
|
// original pretrained model from https://github.com/YuwenXiong/py-R-FCN
|
|
// https://github.com/YuwenXiong/py-R-FCN/blob/master/models/pascal_voc/ResNet-50/rfcn_end2end/test_agnostic.prototxt
|
|
// https://1drv.ms/u/s!AoN7vygOjLIQqUWHpY67oaC7mopf
|
|
// resnet50_rfcn_final.caffemodel
|
|
rfcn.load_param("rfcn_end2end.param");
|
|
rfcn.load_model("rfcn_end2end.bin");
|
|
|
|
const int target_size = 224;
|
|
|
|
const int max_per_image = 100;
|
|
const float confidence_thresh = 0.6f; // CONF_THRESH
|
|
|
|
const float nms_threshold = 0.3f; // NMS_THRESH
|
|
|
|
// scale to target detect size
|
|
int w = bgr.cols;
|
|
int h = bgr.rows;
|
|
float scale = 1.f;
|
|
if (w < h)
|
|
{
|
|
scale = (float)target_size / w;
|
|
w = target_size;
|
|
h = h * scale;
|
|
}
|
|
else
|
|
{
|
|
scale = (float)target_size / h;
|
|
h = target_size;
|
|
w = w * scale;
|
|
}
|
|
|
|
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR, bgr.cols, bgr.rows, w, h);
|
|
|
|
const float mean_vals[3] = {102.9801f, 115.9465f, 122.7717f};
|
|
in.substract_mean_normalize(mean_vals, 0);
|
|
|
|
ncnn::Mat im_info(3);
|
|
im_info[0] = h;
|
|
im_info[1] = w;
|
|
im_info[2] = scale;
|
|
|
|
// step1, extract feature and all rois
|
|
ncnn::Extractor ex1 = rfcn.create_extractor();
|
|
|
|
ex1.input("data", in);
|
|
ex1.input("im_info", im_info);
|
|
|
|
ncnn::Mat rfcn_cls;
|
|
ncnn::Mat rfcn_bbox;
|
|
ncnn::Mat rois; // all rois
|
|
ex1.extract("rfcn_cls", rfcn_cls);
|
|
ex1.extract("rfcn_bbox", rfcn_bbox);
|
|
ex1.extract("rois", rois);
|
|
|
|
// step2, extract bbox and score for each roi
|
|
std::vector<std::vector<Object> > class_candidates;
|
|
for (int i = 0; i < rois.c; i++)
|
|
{
|
|
ncnn::Extractor ex2 = rfcn.create_extractor();
|
|
|
|
ncnn::Mat roi = rois.channel(i); // get single roi
|
|
ex2.input("rfcn_cls", rfcn_cls);
|
|
ex2.input("rfcn_bbox", rfcn_bbox);
|
|
ex2.input("rois", roi);
|
|
|
|
ncnn::Mat bbox_pred;
|
|
ncnn::Mat cls_prob;
|
|
ex2.extract("bbox_pred", bbox_pred);
|
|
ex2.extract("cls_prob", cls_prob);
|
|
|
|
int num_class = cls_prob.w;
|
|
class_candidates.resize(num_class);
|
|
|
|
// find class id with highest score
|
|
int label = 0;
|
|
float score = 0.f;
|
|
for (int i = 0; i < num_class; i++)
|
|
{
|
|
float class_score = cls_prob[i];
|
|
if (class_score > score)
|
|
{
|
|
label = i;
|
|
score = class_score;
|
|
}
|
|
}
|
|
|
|
// ignore background or low score
|
|
if (label == 0 || score <= confidence_thresh)
|
|
continue;
|
|
|
|
// fprintf(stderr, "%d = %f\n", label, score);
|
|
|
|
// unscale to image size
|
|
float x1 = roi[0] / scale;
|
|
float y1 = roi[1] / scale;
|
|
float x2 = roi[2] / scale;
|
|
float y2 = roi[3] / scale;
|
|
|
|
float pb_w = x2 - x1 + 1;
|
|
float pb_h = y2 - y1 + 1;
|
|
|
|
// apply bbox regression
|
|
float dx = bbox_pred[4];
|
|
float dy = bbox_pred[4 + 1];
|
|
float dw = bbox_pred[4 + 2];
|
|
float dh = bbox_pred[4 + 3];
|
|
|
|
float cx = x1 + pb_w * 0.5f;
|
|
float cy = y1 + pb_h * 0.5f;
|
|
|
|
float obj_cx = cx + pb_w * dx;
|
|
float obj_cy = cy + pb_h * dy;
|
|
|
|
float obj_w = pb_w * exp(dw);
|
|
float obj_h = pb_h * exp(dh);
|
|
|
|
float obj_x1 = obj_cx - obj_w * 0.5f;
|
|
float obj_y1 = obj_cy - obj_h * 0.5f;
|
|
float obj_x2 = obj_cx + obj_w * 0.5f;
|
|
float obj_y2 = obj_cy + obj_h * 0.5f;
|
|
|
|
// clip
|
|
obj_x1 = std::max(std::min(obj_x1, (float)(bgr.cols - 1)), 0.f);
|
|
obj_y1 = std::max(std::min(obj_y1, (float)(bgr.rows - 1)), 0.f);
|
|
obj_x2 = std::max(std::min(obj_x2, (float)(bgr.cols - 1)), 0.f);
|
|
obj_y2 = std::max(std::min(obj_y2, (float)(bgr.rows - 1)), 0.f);
|
|
|
|
// append object
|
|
Object obj;
|
|
obj.rect = cv::Rect_<float>(obj_x1, obj_y1, obj_x2 - obj_x1 + 1, obj_y2 - obj_y1 + 1);
|
|
obj.label = label;
|
|
obj.prob = score;
|
|
|
|
class_candidates[label].push_back(obj);
|
|
}
|
|
|
|
// post process
|
|
objects.clear();
|
|
for (int i = 0; i < (int)class_candidates.size(); i++)
|
|
{
|
|
std::vector<Object>& candidates = class_candidates[i];
|
|
|
|
qsort_descent_inplace(candidates);
|
|
|
|
std::vector<int> picked;
|
|
nms_sorted_bboxes(candidates, picked, nms_threshold);
|
|
|
|
for (int j = 0; j < (int)picked.size(); j++)
|
|
{
|
|
int z = picked[j];
|
|
objects.push_back(candidates[z]);
|
|
}
|
|
}
|
|
|
|
qsort_descent_inplace(objects);
|
|
|
|
if (max_per_image > 0 && max_per_image < objects.size())
|
|
{
|
|
objects.resize(max_per_image);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
|
|
{
|
|
static const char* class_names[] = {"background",
|
|
"aeroplane", "bicycle", "bird", "boat",
|
|
"bottle", "bus", "car", "cat", "chair",
|
|
"cow", "diningtable", "dog", "horse",
|
|
"motorbike", "person", "pottedplant",
|
|
"sheep", "sofa", "train", "tvmonitor"
|
|
};
|
|
|
|
cv::Mat image = bgr.clone();
|
|
|
|
for (size_t i = 0; i < objects.size(); i++)
|
|
{
|
|
const Object& obj = objects[i];
|
|
|
|
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
|
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
|
|
|
|
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
|
|
|
|
char text[256];
|
|
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
|
|
|
|
int baseLine = 0;
|
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
|
|
|
int x = obj.rect.x;
|
|
int y = obj.rect.y - label_size.height - baseLine;
|
|
if (y < 0)
|
|
y = 0;
|
|
if (x + label_size.width > image.cols)
|
|
x = image.cols - label_size.width;
|
|
|
|
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
|
|
cv::Scalar(255, 255, 255), -1);
|
|
|
|
cv::putText(image, text, cv::Point(x, y + label_size.height),
|
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
|
|
}
|
|
|
|
cv::imshow("image", image);
|
|
cv::waitKey(0);
|
|
}
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
if (argc != 2)
|
|
{
|
|
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
|
|
return -1;
|
|
}
|
|
|
|
const char* imagepath = argv[1];
|
|
|
|
cv::Mat m = cv::imread(imagepath, 1);
|
|
if (m.empty())
|
|
{
|
|
fprintf(stderr, "cv::imread %s failed\n", imagepath);
|
|
return -1;
|
|
}
|
|
|
|
std::vector<Object> objects;
|
|
detect_rfcn(m, objects);
|
|
|
|
draw_objects(m, objects);
|
|
|
|
return 0;
|
|
}
|