718c41634f
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
347 lines
14 KiB
C++
347 lines
14 KiB
C++
// Tencent is pleased to support the open source community by making ncnn available.
|
|
//
|
|
// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
|
|
//
|
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
|
// in compliance with the License. You may obtain a copy of the License at
|
|
//
|
|
// https://opensource.org/licenses/BSD-3-Clause
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed
|
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations under the License.
|
|
|
|
#include "layer/convolutiondepthwise.h"
|
|
#include "testutil.h"
|
|
|
|
static int test_convolutiondepthwise(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, int group)
|
|
{
|
|
ncnn::Mat a = RandomMat(w, h, c);
|
|
|
|
ncnn::ParamDict pd;
|
|
pd.set(0, outch);
|
|
pd.set(1, kernel);
|
|
pd.set(2, dilation);
|
|
pd.set(3, stride);
|
|
pd.set(4, pad);
|
|
pd.set(5, bias);
|
|
pd.set(6, outch / group * c / group * kernel * kernel * group);
|
|
pd.set(7, group);
|
|
|
|
int activation_type = RAND() % 7; // 0 1 2 3 4 5 6
|
|
ncnn::Mat activation_params(2);
|
|
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha
|
|
activation_params[1] = RandomFloat(0, 1); // beta
|
|
pd.set(9, activation_type);
|
|
pd.set(10, activation_params);
|
|
|
|
std::vector<ncnn::Mat> weights(2);
|
|
weights[0] = RandomMat(outch / group * c / group * kernel * kernel * group);
|
|
weights[1] = RandomMat(outch);
|
|
|
|
int ret = test_layer<ncnn::ConvolutionDepthWise>("ConvolutionDepthWise", pd, weights, a);
|
|
if (ret != 0)
|
|
{
|
|
fprintf(stderr, "test_convolutiondepthwise failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d group=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, group, activation_type, activation_params[0], activation_params[1]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int test_convolutiondepthwise_0()
|
|
{
|
|
static const int kdsp[16][4] = {
|
|
{1, 1, 1, 0},
|
|
{1, 1, 2, 0},
|
|
{2, 1, 1, 1},
|
|
{2, 1, 2, -233},
|
|
{3, 1, 1, 1},
|
|
{3, 1, 2, 1},
|
|
{3, 2, 1, 1},
|
|
{4, 1, 1, 2},
|
|
{4, 1, 2, -233},
|
|
{4, 2, 1, -234},
|
|
{5, 1, 1, -234},
|
|
{5, 1, 2, 2},
|
|
{5, 2, 2, 2},
|
|
{7, 1, 1, 3},
|
|
{7, 1, 2, 3},
|
|
{7, 2, 1, -233},
|
|
};
|
|
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
const int k = kdsp[i][0];
|
|
const int d = kdsp[i][1];
|
|
const int s = kdsp[i][2];
|
|
const int p = kdsp[i][3];
|
|
|
|
int ret = 0
|
|
|| test_convolutiondepthwise(15, 7, 1, 1, k, d, s, p, 1, 1)
|
|
|| test_convolutiondepthwise(15, 7, 2, 2, k, d, s, p, 0, 1)
|
|
|| test_convolutiondepthwise(15, 7, 2, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise(15, 7, 3, 3, k, d, s, p, 0, 3)
|
|
|| test_convolutiondepthwise(15, 7, 4, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise(15, 7, 4, 4, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise(15, 7, 7, 7, k, d, s, p, 1, 7)
|
|
|| test_convolutiondepthwise(15, 7, 8, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise(15, 7, 8, 8, k, d, s, p, 1, 8)
|
|
|| test_convolutiondepthwise(15, 7, 12, 12, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise(15, 7, 15, 15, k, d, s, p, 1, 15)
|
|
|| test_convolutiondepthwise(15, 7, 16, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise(15, 7, 16, 16, k, d, s, p, 1, 16)
|
|
|| test_convolutiondepthwise(18, 17, 1, 1, k, d, s, p, 1, 1)
|
|
|| test_convolutiondepthwise(18, 17, 2, 2, k, d, s, p, 0, 1)
|
|
|| test_convolutiondepthwise(18, 17, 2, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise(18, 17, 3, 3, k, d, s, p, 0, 3)
|
|
|| test_convolutiondepthwise(18, 17, 4, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise(18, 17, 4, 4, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise(18, 17, 7, 7, k, d, s, p, 1, 7)
|
|
|| test_convolutiondepthwise(18, 17, 8, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise(18, 17, 8, 8, k, d, s, p, 1, 8)
|
|
|| test_convolutiondepthwise(18, 17, 12, 12, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise(18, 17, 15, 15, k, d, s, p, 1, 15)
|
|
|| test_convolutiondepthwise(18, 17, 16, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise(18, 17, 16, 16, k, d, s, p, 1, 16)
|
|
|| test_convolutiondepthwise(25, 33, 1, 1, k, d, s, p, 1, 1)
|
|
|| test_convolutiondepthwise(25, 33, 2, 2, k, d, s, p, 0, 1)
|
|
|| test_convolutiondepthwise(25, 33, 2, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise(25, 33, 3, 3, k, d, s, p, 0, 3)
|
|
|| test_convolutiondepthwise(25, 33, 4, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise(25, 33, 4, 4, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise(25, 33, 7, 7, k, d, s, p, 1, 7)
|
|
|| test_convolutiondepthwise(25, 33, 8, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise(25, 33, 8, 8, k, d, s, p, 1, 8)
|
|
|| test_convolutiondepthwise(25, 33, 12, 12, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise(25, 33, 15, 15, k, d, s, p, 1, 15)
|
|
|| test_convolutiondepthwise(25, 33, 16, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise(25, 33, 16, 16, k, d, s, p, 1, 16);
|
|
|
|
if (ret != 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int test_convolutiondepthwise_dynamic(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, int group)
|
|
{
|
|
ncnn::Mat a = RandomMat(w, h, c);
|
|
|
|
ncnn::ParamDict pd;
|
|
pd.set(0, 0);
|
|
pd.set(1, 0);
|
|
pd.set(2, dilation);
|
|
pd.set(3, stride);
|
|
pd.set(4, pad);
|
|
pd.set(5, bias);
|
|
pd.set(6, 0);
|
|
pd.set(7, group);
|
|
pd.set(19, 1); // dynamic weight
|
|
|
|
int activation_type = RAND() % 7; // 0 1 2 3 4 5 6
|
|
ncnn::Mat activation_params(2);
|
|
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha
|
|
activation_params[1] = RandomFloat(0, 1); // beta
|
|
pd.set(9, activation_type);
|
|
pd.set(10, activation_params);
|
|
|
|
std::vector<ncnn::Mat> as(bias ? 3 : 2);
|
|
as[0] = a;
|
|
as[1] = RandomMat(kernel, kernel, c / group, outch);
|
|
if (bias)
|
|
as[2] = RandomMat(outch);
|
|
|
|
std::vector<ncnn::Mat> weights(0);
|
|
|
|
int ret = test_layer<ncnn::ConvolutionDepthWise>("ConvolutionDepthWise", pd, weights, as);
|
|
if (ret != 0)
|
|
{
|
|
fprintf(stderr, "test_convolutiondepthwise_dynamic failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d group=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, group, activation_type, activation_params[0], activation_params[1]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int test_convolutiondepthwise_2()
|
|
{
|
|
static const int kdsp[7][4] = {
|
|
{1, 1, 1, 0},
|
|
{1, 1, 2, 0},
|
|
{2, 1, 1, 1},
|
|
{2, 1, 2, -233},
|
|
{3, 1, 1, 1},
|
|
{3, 1, 2, 1},
|
|
{3, 2, 1, -234},
|
|
};
|
|
|
|
for (int i = 0; i < 7; i++)
|
|
{
|
|
const int k = kdsp[i][0];
|
|
const int d = kdsp[i][1];
|
|
const int s = kdsp[i][2];
|
|
const int p = kdsp[i][3];
|
|
|
|
int ret = 0
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 1, 1, k, d, s, p, 1, 1)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 2, 2, k, d, s, p, 0, 1)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 2, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 3, 3, k, d, s, p, 0, 3)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 4, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 4, 4, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 7, 7, k, d, s, p, 1, 7)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 8, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 8, 8, k, d, s, p, 1, 8)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 12, 12, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 15, 15, k, d, s, p, 1, 15)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 16, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise_dynamic(11, 10, 16, 16, k, d, s, p, 1, 16);
|
|
|
|
if (ret != 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if NCNN_INT8
|
|
static int test_convolutiondepthwise_int8(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, int group, bool requant = false)
|
|
{
|
|
ncnn::Mat a = RandomMat(w, h, c);
|
|
|
|
ncnn::ParamDict pd;
|
|
pd.set(0, outch);
|
|
pd.set(1, kernel);
|
|
pd.set(2, dilation);
|
|
pd.set(3, stride);
|
|
pd.set(4, pad);
|
|
pd.set(5, bias);
|
|
pd.set(6, outch / group * c / group * kernel * kernel * group);
|
|
pd.set(7, group);
|
|
pd.set(8, requant ? 101 : 1); // int8_scale_term
|
|
|
|
int activation_type = RAND() % 7; // 0 1 2 3 4 5 6
|
|
ncnn::Mat activation_params(2);
|
|
activation_params[0] = (activation_type == 6) ? RandomFloat(0, 1) : RandomFloat(-1, 0); // alpha
|
|
activation_params[1] = RandomFloat(0, 1); // beta
|
|
pd.set(9, activation_type);
|
|
pd.set(10, activation_params);
|
|
|
|
std::vector<ncnn::Mat> weights(bias ? 5 : 4);
|
|
weights[0] = RandomMat(outch / group * c / group * kernel * kernel * group);
|
|
ncnn::Mat weight_scales = scales_mat(weights[0], group, c * kernel * kernel / group, c * kernel * kernel / group);
|
|
ncnn::Mat input_scales = scales_mat(a, 1, w * h * c, a.cstep);
|
|
ncnn::Mat top_scales = requant ? scales_mat(a, 1, w * h * c, a.cstep) : ncnn::Mat();
|
|
if (bias)
|
|
{
|
|
weights[1] = RandomMat(outch);
|
|
weights[2] = weight_scales;
|
|
weights[3] = input_scales;
|
|
weights[4] = top_scales;
|
|
}
|
|
else
|
|
{
|
|
weights[1] = weight_scales;
|
|
weights[2] = input_scales;
|
|
weights[3] = top_scales;
|
|
}
|
|
|
|
int flag = TEST_LAYER_DISABLE_GPU_TESTING;
|
|
int ret = test_layer<ncnn::ConvolutionDepthWise>("ConvolutionDepthWise", pd, weights, a, requant ? 1.0f : 0.001f, 0, flag);
|
|
if (ret != 0)
|
|
{
|
|
fprintf(stderr, "test_convolutiondepthwise_int8 failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d group=%d requant=%d act=%d actparams=[%f,%f]\n", w, h, c, outch, kernel, dilation, stride, pad, bias, group, requant, activation_type, activation_params[0], activation_params[1]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int test_convolutiondepthwise_1()
|
|
{
|
|
static const int kdsp[16][4] = {
|
|
{1, 1, 1, 0},
|
|
{1, 1, 2, 0},
|
|
{2, 1, 1, 1},
|
|
{2, 1, 2, -233},
|
|
{3, 1, 1, 1},
|
|
{3, 1, 2, 1},
|
|
{3, 2, 1, 1},
|
|
{4, 1, 1, 2},
|
|
{4, 1, 2, -233},
|
|
{4, 2, 1, -234},
|
|
{5, 1, 1, -234},
|
|
{5, 1, 2, 2},
|
|
{5, 2, 2, 2},
|
|
{7, 1, 1, 3},
|
|
{7, 1, 2, 3},
|
|
{7, 2, 1, -233},
|
|
};
|
|
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
const int k = kdsp[i][0];
|
|
const int d = kdsp[i][1];
|
|
const int s = kdsp[i][2];
|
|
const int p = kdsp[i][3];
|
|
|
|
int ret = 0
|
|
|| test_convolutiondepthwise_int8(15, 7, 1, 1, k, d, s, p, 1, 1)
|
|
|| test_convolutiondepthwise_int8(15, 7, 2, 2, k, d, s, p, 0, 1)
|
|
|| test_convolutiondepthwise_int8(15, 7, 2, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise_int8(15, 7, 3, 3, k, d, s, p, 0, 3)
|
|
|| test_convolutiondepthwise_int8(15, 7, 4, 2, k, d, s, p, 1, 2)
|
|
|| test_convolutiondepthwise_int8(15, 7, 4, 4, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise_int8(15, 7, 7, 7, k, d, s, p, 1, 7)
|
|
|| test_convolutiondepthwise_int8(15, 7, 8, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise_int8(15, 7, 8, 8, k, d, s, p, 1, 8)
|
|
|| test_convolutiondepthwise_int8(15, 7, 12, 12, k, d, s, p, 0, 4)
|
|
|| test_convolutiondepthwise_int8(15, 7, 15, 15, k, d, s, p, 1, 15)
|
|
|| test_convolutiondepthwise_int8(15, 7, 16, 8, k, d, s, p, 0, 2)
|
|
|| test_convolutiondepthwise_int8(15, 7, 16, 16, k, d, s, p, 1, 16);
|
|
|
|
if (ret != 0)
|
|
return -1;
|
|
}
|
|
|
|
for (int i = 0; i < 16; i++)
|
|
{
|
|
const int k = kdsp[i][0];
|
|
const int d = kdsp[i][1];
|
|
const int s = kdsp[i][2];
|
|
const int p = kdsp[i][3];
|
|
|
|
int ret = 0
|
|
|| test_convolutiondepthwise_int8(9, 7, 1, 1, k, d, s, p, 1, 1, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 2, 2, k, d, s, p, 0, 1, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 2, 2, k, d, s, p, 1, 2, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 3, 3, k, d, s, p, 0, 3, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 4, 2, k, d, s, p, 1, 2, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 4, 4, k, d, s, p, 0, 4, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 7, 7, k, d, s, p, 1, 7, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 8, 8, k, d, s, p, 0, 2, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 8, 8, k, d, s, p, 1, 8, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 12, 12, k, d, s, p, 0, 4, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 15, 15, k, d, s, p, 1, 15, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 16, 8, k, d, s, p, 0, 2, true)
|
|
|| test_convolutiondepthwise_int8(9, 7, 16, 16, k, d, s, p, 1, 16, true);
|
|
|
|
if (ret != 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif // NCNN_INT8
|
|
|
|
int main()
|
|
{
|
|
SRAND(7767517);
|
|
|
|
#if NCNN_INT8
|
|
return test_convolutiondepthwise_0() || test_convolutiondepthwise_1() || test_convolutiondepthwise_2();
|
|
#else
|
|
return test_convolutiondepthwise_0() || test_convolutiondepthwise_2();
|
|
#endif
|
|
}
|