deepin-ocr/3rdparty/ncnn/tests/test_deconvolution.cpp
wangzhengyang 718c41634f feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
2022-05-10 10:22:11 +08:00

118 lines
4.2 KiB
C++

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "layer/deconvolution.h"
#include "testutil.h"
static int test_deconvolution(int w, int h, int c, int outch, int kernel, int dilation, int stride, int pad, int bias, int output_pad_right, int output_pad_bottom, int output_w, int output_h)
{
ncnn::Mat a = RandomMat(w, h, c);
if (output_w > 0 && output_h > 0 && pad != -233 && pad != -234)
{
pad = -233;
}
ncnn::ParamDict pd;
pd.set(0, outch); // num_output
pd.set(1, kernel); // kernel_w
pd.set(2, dilation); // dilation_w
pd.set(3, stride); // stride_w
pd.set(4, pad); // pad_w
pd.set(5, bias); // bias_term
pd.set(6, outch * c * kernel * kernel);
int activation_type = RAND() % 5; // 0 1 2 3 4
ncnn::Mat activation_params(2);
activation_params[0] = RandomFloat(-1, 0); // alpha
activation_params[1] = RandomFloat(0, 1); // beta
pd.set(9, activation_type);
pd.set(10, activation_params);
pd.set(18, output_pad_right);
pd.set(19, output_pad_bottom);
pd.set(20, output_w);
pd.set(21, output_h);
std::vector<ncnn::Mat> weights(2);
weights[0] = RandomMat(outch * c * kernel * kernel);
weights[1] = RandomMat(outch);
int ret = test_layer<ncnn::Deconvolution>("Deconvolution", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_deconvolution failed w=%d h=%d c=%d outch=%d kernel=%d dilation=%d stride=%d pad=%d bias=%d act=%d actparams=[%f,%f] output_pad_right=%d output_pad_bottom=%d output_w=%d output_h=%d\n", w, h, c, outch, kernel, dilation, stride, pad, bias, activation_type, activation_params[0], activation_params[1], output_pad_right, output_pad_bottom, output_w, output_h);
}
return ret;
}
static int test_deconvolution_0()
{
static const int kdsp[16][4] = {
{1, 1, 1, 0},
{1, 1, 2, 0},
{2, 1, 1, 1},
{2, 1, 2, -233},
{3, 1, 1, 1},
{3, 1, 2, 1},
{3, 2, 1, 1},
{4, 1, 1, -233},
{4, 1, 2, -234},
{4, 2, 1, -234},
{5, 1, 1, 2},
{5, 1, 2, 2},
{5, 2, 2, 2},
{7, 1, 1, 3},
{7, 1, 2, 3},
{7, 2, 1, -233},
};
for (int i = 0; i < 16; i++)
{
const int k = kdsp[i][0];
const int d = kdsp[i][1];
const int s = kdsp[i][2];
const int p = kdsp[i][3];
int ret = 0
|| test_deconvolution(9, 7, 1, 1, k, d, s, p, 1, 0, 0, 0, 0)
|| test_deconvolution(9, 7, 4, 13, k, d, s, p, 0, 1, 1, 7, 5)
|| test_deconvolution(9, 7, 13, 4, k, d, s, p, 1, 1, 0, 0, 0)
|| test_deconvolution(9, 7, 4, 8, k, d, s, p, 0, 0, 1, 0, 0)
|| test_deconvolution(9, 7, 8, 4, k, d, s, p, 1, 0, 0, 7, 5)
|| test_deconvolution(9, 7, 8, 13, k, d, s, p, 0, 2, 2, 0, 0)
|| test_deconvolution(9, 7, 13, 8, k, d, s, p, 1, 2, 0, 0, 0)
|| test_deconvolution(9, 7, 16, 16, k, d, s, p, 0, 0, 2, 7, 5);
if (ret != 0)
return -1;
}
return 0
|| test_deconvolution(7, 5, 24, 32, 4, 2, 2, 2, 1, 0, 0, 0, 0)
|| test_deconvolution(7, 5, 32, 24, 4, 2, 2, 2, 1, 0, 0, 0, 0)
|| test_deconvolution(7, 5, 28, 32, 4, 2, 2, 2, 1, 0, 0, 0, 0)
|| test_deconvolution(7, 5, 32, 28, 4, 2, 2, 2, 1, 0, 0, 0, 0)
|| test_deconvolution(7, 5, 26, 32, 4, 2, 2, 2, 1, 0, 0, 0, 0)
|| test_deconvolution(7, 5, 32, 26, 4, 2, 2, 2, 1, 0, 0, 0, 0);
}
int main()
{
SRAND(7767517);
return test_deconvolution_0();
}